
Journal of Machine Learning Research 11 (2010) 625-660 Submitted 8/09; Published 2/10

Why Does Unsupervised Pre-training Help Deep Learning?

Dumitru Erhan ∗ DUMITRU .ERHAN@UMONTREAL.CA

Yoshua Bengio YOSHUA.BENGIO@UMONTREAL.CA

Aaron Courville AARON.COURVILLE@UMONTREAL.CA

Pierre-Antoine Manzagol PIERRE-ANTOINE.MANZAGOL @UMONTREAL.CA

Pascal Vincent PASCAL.VINCENT@UMONTREAL.CA

Département d’informatique et de recherche opérationnelle
Universit́e de Montŕeal
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Abstract
Much recent research has been devoted to learning algorithms for deep architectures such as Deep
Belief Networks and stacks of auto-encoder variants, with impressive results obtained in several
areas, mostly on vision and language data sets. The best results obtained on supervised learning
tasks involve an unsupervised learning component, usuallyin an unsupervised pre-training phase.
Even though these new algorithms have enabled training deepmodels, many questions remain as to
the nature of this difficult learning problem. The main question investigated here is the following:
how does unsupervised pre-training work? Answering this questions is important if learning in
deep architectures is to be further improved. We propose several explanatory hypotheses and test
them through extensive simulations. We empirically show the influence of pre-training with respect
to architecture depth, model capacity, and number of training examples. The experiments confirm
and clarify the advantage of unsupervised pre-training. The results suggest that unsupervised pre-
training guides the learning towards basins of attraction of minima that support better generalization
from the training data set; the evidence from these results supports a regularization explanation for
the effect of pre-training.

Keywords: deep architectures, unsupervised pre-training, deep belief networks, stacked denoising
auto-encoders, non-convex optimization

1. Introduction

Deep learning methods aim at learning feature hierarchies with features from higher levels of the
hierarchy formed by the composition of lower level features. They include learning methods for a
wide array ofdeep architectures(Bengio, 2009 provides a survey), including neural networks with
many hidden layers (Bengio et al., 2007; Ranzato et al., 2007; Vincent etal., 2008; Collobert and
Weston, 2008) and graphical models with many levels of hidden variables (Hinton et al., 2006),
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among others (Zhu et al., 2009; Weston et al., 2008). Theoretical results(Yao, 1985; H̊astad, 1986;
Håstad and Goldmann, 1991; Bengio et al., 2006), reviewed and discussed by Bengio and LeCun
(2007), suggest that in order to learn the kind of complicated functions that can represent high-level
abstractions (e.g., in vision, language, and other AI-level tasks), one may needdeep architectures.
The recent surge in experimental work in the field seems to support this notion, accumulating evi-
dence that in challenging AI-related tasks—such as computer vision (Bengio et al., 2007; Ranzato
et al., 2007; Larochelle et al., 2007; Ranzato et al., 2008; Lee et al., 2009; Mobahi et al., 2009; Osin-
dero and Hinton, 2008), natural language processing (NLP) (Collobert and Weston, 2008; Weston
et al., 2008), robotics (Hadsell et al., 2008), or information retrieval (Salakhutdinov and Hinton,
2007; Salakhutdinov et al., 2007)—deep learning methods significantly out-perform comparable
but shallow competitors, and often match or beat the state-of-the-art.

These recent demonstrations of the potential of deep learning algorithms were achieved despite
the serious challenge of training models with many layers of adaptive parameters. In virtually all
instances of deep learning, the objective function is a highly non-convexfunction of the parameters,
with the potential for many distinctlocal minima in the model parameter space. The principal
difficulty is that not all of these minima provide equivalent generalization errors and, we suggest,
that for deep architectures, the standard training schemes (based on random initialization) tend to
place the parameters in regions of the parameters space that generalize poorly—as was frequently
observed empirically but rarely reported (Bengio and LeCun, 2007).

The breakthrough to effective training strategies for deep architectures came in 2006 with
the algorithms for training deep belief networks (DBN) (Hinton et al., 2006) and stacked auto-
encoders (Ranzato et al., 2007; Bengio et al., 2007), which are all based on a similar approach:
greedy layer-wise unsupervised pre-training followed by supervisedfine-tuning. Each layer is pre-
trained with an unsupervised learning algorithm, learning a nonlinear transformation of its input
(the output of the previous layer) that captures the main variations in its input.This unsupervised
pre-training sets the stage for a final training phase where the deep architecture is fine-tuned with
respect to a supervised training criterion with gradient-based optimization. While the improvement
in performance of trained deep models offered by the pre-training strategy is impressive, little is
understood about the mechanisms underlying this success.

The objective of this paper is to explore, through extensive experimentation, how unsupervised
pre-training works to render learning deep architectures more effective and why they appear to
work so much better than traditional neural network training methods. Thereare a few reasonable
hypotheses why unsupervised pre-training might work. One possibility is that unsupervised pre-
training acts as a kind of network pre-conditioner, putting the parameter values in the appropriate
range for further supervised training. Another possibility, suggested by Bengio et al. (2007), is that
unsupervised pre-training initializes the model to a point in parameter space that somehow renders
the optimization process more effective, in the sense of achieving a lower minimum of the empirical
cost function.

Here, we argue that our experiments support a view of unsupervised pre-training as an unusual
form of regularization: minimizing variance and introducing bias towards configurations of the pa-
rameter space that are useful for unsupervised learning. This perspective places unsupervised pre-
training well within the family of recently developed semi-supervised methods. The unsupervised
pre-training approach is, however, unique among semi-supervised training strategies in that it acts by
defining a particular initialization point for standard supervised training rather than either modifying
the supervised objective function (Barron, 1991) or explicitly imposing constraints on the parame-
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ters throughout training (Lasserre et al., 2006). This type of initialization-as-regularization strategy
has precedence in the neural networks literature, in the shape of the early stopping idea (Sj̈oberg
and Ljung, 1995; Amari et al., 1997), and in the Hidden Markov Models (HMM) community (Bahl
et al., 1986; Povey and Woodland, 2002) where it was found that firsttraining an HMM as a genera-
tive model was essential (as an initialization step) before fine-tuning it discriminatively. We suggest
that, in the highly non-convex situation of training a deep architecture, defining a particular initial-
ization pointimplicitly imposes constraints on the parameters in that it specifies which minima (out
of a very large number of possible minima) of the cost function are allowed. In this way, it may
be possible to think of unsupervised pre-training as being related to the approach of Lasserre et al.
(2006).

Another important and distinct property of the unsupervised pre-training strategy is that in the
standard situation of training using stochastic gradient descent, the beneficial generalization effects
due to pre-training do not appear to diminish as the number of labeled examplesgrows very large.
We argue that this is a consequence of the combination of the non-convexity(multi-modality) of the
objective function and the dependency of the stochastic gradient descent method on example order-
ing. We find that early changes in the parameters have a greater impact on the final region (basin
of attraction of the descent procedure) in which the learner ends up. Inparticular, unsupervised
pre-training sets the parameter in a region from which better basins of attraction can be reached, in
terms of generalization. Hence, although unsupervised pre-training is a regularizer, it can have a
positive effect on the training objective when the number of training examples is large.

As previously stated, this paper is concerned with an experimental assessment of the various
competing hypotheses regarding the role of unsupervised pre-training inthe recent success of deep
learning methods. To this end, we present a series of experiments design topit these hypotheses
against one another in an attempt to resolve some of the mystery surroundingthe effectiveness of
unsupervised pre-training.

In the first set of experiments (in Section 6), we establish the effect of unsupervised pre-training
on improving the generalization error of trained deep architectures. In thissection we also exploit
dimensionality reduction techniques to illustrate how unsupervised pre-training affects the location
of minima in parameter space.

In the second set of experiments (in Section 7), we directly compare the two alternative hy-
potheses (pre-training as a pre-conditioner; and pre-training as an optimization scheme) against
the hypothesis that unsupervised pre-training is a regularization strategy. In the final set of experi-
ments, (in Section 8), we explore the role of unsupervised pre-training in the online learning setting,
where the number of available training examples grows very large. In theseexperiments, we test
key aspects of our hypothesis relating to the topology of the cost function and the role of unsuper-
vised pre-training in manipulating the region of parameter space from which supervised training is
initiated.

Before delving into the experiments, we begin with a more in-depth view of the challenges in
training deep architectures and how we believe unsupervised pre-training works towards overcom-
ing these challenges.
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2. The Challenges of Deep Learning

In this section, we present a perspective on why standard training of deep models through gradient
backpropagation appears to be so difficult. First, it is important to establish what we mean in stating
that training is difficult.

We believe the central challenge in training deep architectures is dealing with the strong depen-
dencies that exist during training between the parameters across layers.One way to conceive the
difficulty of the problem is that we must simultaneously:

1. adapt the lower layers in order to provide adequate input to the final (end of training) setting
of the upper layers

2. adapt the upper layers to make good use of the final (end of training) setting of the lower
layers.

The second problem is easy on its own (i.e., when the final setting of the otherlayers is known). It is
not clear how difficult is the first one, and we conjecture that a particulardifficulty arises when both
sets of layers must be learned jointly, as the gradient of the objective function is limited to a local
measure given the current setting of other parameters. Furthermore, because with enough capacity
the top two layers can easily overfit the training set, training error does notnecessarily reveal the
difficulty in optimizing the lower layers. As shown in our experiments here, the standard training
schemes tend to place the parameters in regions of the parameters space thatgeneralize poorly.

A separate but related issue appears if we focus our consideration of traditional training methods
for deep architectures on stochastic gradient descent. A sequence ofexamples along with an online
gradient descent procedure defines a trajectory in parameter space,which converges in some sense
(the error does not improve anymore, maybe because we are near a local minimum). The hypothesis
is that small perturbations of that trajectory (either by initialization or by changes in which examples
are seen when) have more effect early on. Early in the process of following the stochastic gradient,
changes in the weights tend to increase their magnitude and, consequently, the amount of non-
linearity of the network increases. As this happens, the set of regions accessible by stochastic
gradient descent on samples of the training distribution becomes smaller. Early on in training small
perturbations allow the model parameters to switch from one basin to a nearbyone, whereas later
on (typically with larger parameter values), it is unlikely to “escape” from such a basin of attraction.
Hence the early examples can have a larger influence and, in practice, trap the model parameters in
particular regions of parameter space that correspond to the specific and arbitrary ordering of the
training examples.1 An important consequence of this phenomenon is that even in the presenceof
a very large (effectively infinite) amounts of supervised data, stochasticgradient descent is subject
to a degree ofoverfittingto the training data presented early in the training process. In that sense,
unsupervised pre-training interacts intimately with the optimization process, andwhen the number
of training examples becomes large, its positive effect is seen not only on generalization error but
also on training error.

1. This process seems similar to the “critical period” phenomena observed in neuroscience and psychology (Bornstein,
1987).
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3. Unsupervised Pre-training Acts as a Regularizer

As stated in the introduction, we believe that greedy layer-wise unsupervised pre-training overcomes
the challenges of deep learning by introducing a useful prior to thesupervised fine-tuningtraining
procedure. We claim that the regularization effect is a consequence ofthe pre-training procedure
establishing an initialization point of the fine-tuning procedure inside a regionof parameter space
in which the parameters are henceforth restricted. The parameters are restricted to a relatively small
volume of parameter space that is delineated by the boundary of thelocal basin of attractionof the
supervised fine-tuning cost function.

The pre-training procedure increases the magnitude of the weights and in standard deep models,
with a sigmoidal nonlinearity, this has the effect of rendering both the function more nonlinear and
the cost function locally more complicated with more topological features such as peaks, troughs
and plateaus. The existence of these topological features renders the parameter space locally more
difficult to travel significant distances via a gradient descent procedure. This is the core of the
restrictive property imposed by the pre-training procedure and hence the basis of its regularizing
properties.

But unsupervised pre-training restricts the parameters to particular regions: those that corre-
spond to capturing structure in the input distributionP(X). To simply state that unsupervised pre-
training is a regularization strategy somewhat undermines the significance ofits effectiveness. Not
all regularizers are created equal and, in comparison to standard regularization schemes such as
L1 andL2 parameter penalization, unsupervised pre-training is dramatically effective. We believe
the credit for its success can be attributed to the unsupervised training criteria optimized during
unsupervised pre-training.

During each phase of the greedy unsupervised training strategy, layers are trained to represent
the dominant factors of variation extant in the data. This has the effect of leveraging knowledge
of X to form, at each layer, a representation ofX consisting of statistically reliable features of
X that can then be used to predict the output (usually a class label)Y. This perspective places
unsupervised pre-training well within the family of learning strategies collectively know as semi-
supervised methods. As with other recent work demonstrating the effectiveness of semi-supervised
methods in regularizing model parameters, we claim that the effectiveness of the unsupervised pre-
training strategy is limited to the extent that learningP(X) is helpful in learningP(Y|X). Here,
we find transformations ofX—learned features—that are predictive of the main factors of variation
in P(X), and when the pre-training strategy is effective,2 some of these learned features ofX are
also predictive ofY. In the context of deep learning, the greedy unsupervised strategy mayalso
have a special function. To some degree it resolves the problem of simultaneously learning the
parameters at all layers (mentioned in Section 2) by introducing a proxy criterion. This proxy
criterion encourages significant factors of variation, present in the input data, to be represented in
intermediate layers.

To clarify this line of reasoning, we can formalize the effect of unsupervised pre-training in
inducing a prior distribution over the parameters. Let us assume that parameters are forced to be
chosen in a bounded regionS ⊂ R

d. Let S be split in regions{Rk} that are the basins of attrac-
tion of descent procedures in the training error (note that{Rk} depends on the training set, but the
dependency decreases as the number of examples increases). We have ∪kRk = S andRi ∩Rj = /0
for i 6= j. Let vk =

R

1θ∈Rkdθ be the volume associated with regionRk (whereθ are our model’s

2. Acting as a form of (data-dependent) “prior” on the parameters, aswe are about to formalize.
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parameters). Letrk be the probability that a purely random initialization (according to our initial-
ization procedure, which factorizes across parameters) lands inRk, and letπk be the probability that
pre-training (following a random initialization) lands inRk, that is,∑k rk = ∑k πk = 1. We can now
take into account the initialization procedure as a regularization term:

regularizer= − logP(θ).

For pre-trained models, the prior is

Ppre−training(θ) = ∑
k

1θ∈Rkπk/vk.

For the models without unsupervised pre-training, the prior is

Pno−pre−training(θ) = ∑
k

1θ∈Rkrk/vk.

One can verify thatPpre−training(θ ∈ Rk) = πk andPno−pre−training(θ ∈ Rk) = rk. Whenπk is tiny, the
penalty is high whenθ ∈ Rk, with unsupervised pre-training. The derivative of this regularizer is
zero almost everywhere because we have chosen a uniform prior inside each regionRk. Hence, to
take the regularizer into account, and having a generative modelPpre−training(θ) for θ (i.e., this is
the unsupervised pre-training procedure), it is reasonable to sample aninitial θ from it (knowing
that from this point on the penalty will not increase during the iterative minimization of the training
criterion), and this is exactly how the pre-trained models are obtained in our experiments.

Note that this formalization is just an illustration: it is there to simply show how one could
conceptually think of an initialization point as a regularizer and should not betaken as a literal
interpretation of how regularization is explicitly achieved, since we do not have an analytic formula
for computing theπk’s andvk’s. Instead these are implicitly defined by the whole unsupervised
pre-training procedure.

4. Previous Relevant Work

We start with an overview of the literature on semi-supervised learning (SSL), since the SSL frame-
work is essentially the one in which we operate as well.

4.1 Related Semi-Supervised Methods

It has been recognized for some time that generative models are less prone to overfitting than dis-
criminant ones (Ng and Jordan, 2002). Consider input variableX and target variableY. Whereas a
discriminant model focuses onP(Y|X), a generative model focuses onP(X,Y) (often parametrized
asP(X|Y)P(Y)), that is, it also cares about gettingP(X) right, which can reduce the freedom of
fitting the data when the ultimate goal is only to predictY givenX.

Exploiting information aboutP(X) to improve generalization of a classifier has been the driving
idea behind semi-supervised learning (Chapelle et al., 2006). For example, one can use unsupervised
learning to mapX into a representation (also called embedding) such that two examplesx1 andx2

that belong to the same cluster (or are reachable through a short path going through neighboring ex-
amples in the training set) end up having nearby embeddings. One can then use supervised learning
(e.g., a linear classifier) in that new space and achieve better generalization in many cases (Belkin
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and Niyogi, 2002; Chapelle et al., 2003). A long-standing variant of this approach is the applica-
tion of Principal Components Analysis as a pre-processing step before applying a classifier (on the
projected data). In these models the data is first transformed in a new representation using unsu-
pervised learning, and a supervised classifier is stacked on top, learning to map the data in this new
representation into class predictions.

Instead of having separate unsupervised and supervised componentsin the model, one can con-
sider models in whichP(X) (or P(X,Y)) andP(Y|X) share parameters (or whose parameters are
connected in some way), and one can trade-off the supervised criterion− logP(Y|X) with the un-
supervised or generative one (− logP(X) or − logP(X,Y)). It can then be seen that the generative
criterion corresponds to a particular form of prior (Lasserre et al., 2006), namely that the structure of
P(X) is connected to the structure ofP(Y|X) in a way that is captured by the shared parametrization.
By controlling how much of the generative criterion is included in the total criterion, one can find a
better trade-off than with a purely generative or a purely discriminative training criterion (Lasserre
et al., 2006; Larochelle and Bengio, 2008).

In the context of deep architectures, a very interesting application of these ideas involves adding
an unsupervised embedding criterion at each layer (or only one intermediate layer) to a traditional
supervised criterion (Weston et al., 2008). This has been shown to be a powerful semi-supervised
learning strategy, and is an alternative to the kind of algorithms described and evaluated in this
paper, which also combine unsupervised learning with supervised learning.

In the context of scarcity of labelled data (and abundance of unlabelled data), deep architectures
have shown promise as well. Salakhutdinov and Hinton (2008) describe a method for learning the
covariance matrix of a Gaussian Process, in which the usage of unlabelledexamples for modeling
P(X) improvesP(Y|X) quite significantly. Note that such a result is to be expected: with few la-
belled samples, modelingP(X) usually helps. Our results show that even in the context ofabundant
labelled data, unsupervised pre-training still has a pronounced positive effect ongeneralization: a
somewhat surprising conclusion.

4.2 Early Stopping as a Form of Regularization

We stated that pre-training as initialization can be seen as restricting the optimization procedure to
a relatively small volume of parameter space that corresponds to a local basin of attraction of the
supervised cost function. Early stopping can be seen as having a similar effect, by constraining the
optimization procedure to a region of the parameter space that is close to the initial configuration
of parameters. Withτ the number of training iterations andη the learning rate used in the update
procedure,τη can be seen as the reciprocal of a regularization parameter. Indeed, restricting either
quantity restricts the area of parameter space reachable from the starting point. In the case of the
optimization of a simple linear model (initialized at the origin) using a quadratic error function and
simple gradient descent, early stopping will have a similar effect to traditionalregularization.

Thus, in both pre-training and early stopping, the parameters of the supervised cost function
are constrained to be close to their initial values.3 A more formal treatment of early stopping as
regularization is given by Sjöberg and Ljung (1995) and Amari et al. (1997). There is no equivalent
treatment of pre-training, but this paper sheds some light on the effects ofsuch initialization in the
case of deep architectures.

3. In the case of pre-training the “initial values” of the parameters for thesupervised phase are those that were obtained
at the end of pre-training.
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5. Experimental Setup and Methodology

In this section, we describe the setting in which we test the hypothesis introduced in Section 3 and
previously proposed hypotheses. The section includes a description ofthe deep architectures used,
the data sets and the details necessary to reproduce our results.

5.1 Models

All of the successful methods (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Bengio et al.,
2007; Ranzato et al., 2007; Vincent et al., 2008; Weston et al., 2008; Ranzato et al., 2008; Lee
et al., 2008) in the literature for training deep architectures have something incommon: they rely
on an unsupervised learning algorithm that provides a training signal at the level of a single layer.
Most work in two main phases. In a first phase,unsupervised pre-training, all layers are initialized
using this layer-wise unsupervised learning signal. In a second phase,fine-tuning, a global training
criterion (a prediction error, using labels in the case of a supervised task) is minimized. In the
algorithms initially proposed (Hinton et al., 2006; Bengio et al., 2007; Ranzatoet al., 2007), the
unsupervised pre-training is done in a greedy layer-wise fashion: at stagek, thek-th layer is trained
(with respect to an unsupervised criterion) using as input the output of the previous layer, and while
the previous layers are kept fixed.

We shall consider two deep architectures as representatives of two families of models encoun-
tered in the deep learning literature.

5.1.1 DEEPBELIEF NETWORKS

The first model is the Deep Belief Net (DBN) by Hinton et al. (2006), obtained by training and
stacking several layers of Restricted Boltzmann Machines (RBM) in a greedy manner. Once this
stack of RBMs is trained, it can be used to initialize a multi-layer neural networkfor classification.

An RBM with n hidden units is a Markov Random Field (MRF) for the joint distribution be-
tween hidden variableshi and observed variablesx j such thatP(h|x) andP(x|h) factorize, that is,
P(h|x) = ∏i P(hi |x) andP(x|h) = ∏ j P(x j |h). The sufficient statistics of the MRF are typicallyhi ,
x j andhix j , which gives rise to the following joint distribution:

P(x,h) ∝ eh′Wx+b′x+c′h

with corresponding parametersθ = (W,b,c) (with ′ denoting transpose,ci associated withhi , b j

with x j , andWi j with hix j ). If we restricthi andx j to be binary units, it is straightforward to show
that

P(x|h) = ∏
j

P(x j |h) with

P(x j = 1|h) = sigmoid(b j +∑
i

Wi j hi).

where sigmoid(a) = 1/(1+exp(−a)) (applied element-wise on a vectora), andP(h|x) also has
a similar form:

P(h|x) = ∏
i

P(hi |x) with

P(hi = 1|x) = sigmoid(ci +∑
j

Wi j x j).
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The RBM form can be generalized to other conditional distributions besidesthe binomial, including
continuous variables. Welling et al. (2005) describe a generalization of RBM models to conditional
distributions from the exponential family.

RBM models can be trained by approximate stochastic gradient descent. Although P(x) is
not tractable in an RBM, the Contrastive Divergence estimator (Hinton, 2002) is a good stochastic
approximation of∂ logP(x)

∂θ , in that it very often has the same sign (Bengio and Delalleau, 2009).

A DBN is a multi-layer generative model with layer variablesh0 (the input or visible layer),
h1, h2, etc. The top two layers have a joint distribution which is an RBM, andP(hk|hk+1) are
parametrized in the same way as for an RBM. Hence a 2-layer DBN is an RBM,and a stack of RBMs
share parametrization with a corresponding DBN. The contrastive divergence update direction can
be used to initialize each layer of a DBN as an RBM, as follows. Consider the first layer of the DBN
trained as an RBMP1 with hidden layerh1 and visible layerv1. We can train a second RBMP2

that models (in its visible layer) the samplesh1 from P1(h1|v1) whenv1 is sampled from the training
data set. It can be shown that this maximizes a lower bound on the log-likelihoodof the DBN. The
number of layers can be increased greedily, with the newly added top layertrained as an RBM to
model the samples produced by chaining the posteriorsP(hk|hk−1) of the lower layers (starting from
h0 from the training data set).

The parameters of a DBN or of a stack of RBMs also correspond to the parameters of a de-
terministic feed-forward multi-layer neural network. Thei-th unit of thek-th layer of the neural
network outputŝhki = sigmoid(cki +∑ j Wki j ĥk−1, j), using the parametersck andWk of thek-th layer
of the DBN. Hence, once the stack of RBMs or the DBN is trained, one can use those parameters to
initialize the first layers of a corresponding multi-layer neural network. One or more additional lay-
ers can be added to map the top-level featuresĥk to the predictions associated with a target variable
(here the probabilities associated with each class in a classification task). Bengio (2009) provides
more details on RBMs and DBNs, and a survey of related models and deep architectures.

5.1.2 STACKED DENOISING AUTO-ENCODERS

The second model, by Vincent et al. (2008), is the so-called Stacked Denoising Auto-Encoder
(SDAE). It borrows the greedy principle from DBNs, but uses denoising auto-encoders as a building
block for unsupervised modeling. An auto-encoder learns an encoderh(·) and a decoderg(·) whose
composition approaches the identity for examples in the training set, that is,g(h(x))≈ x for x in the
training set.

Assuming that some constraint preventsg(h(·)) from being the identity for arbitrary arguments,
the auto-encoder has to capture statistical structure in the training set in order to minimize recon-
struction error. However, with a high capacity code (h(x) has too many dimensions), a regular
auto-encoder could potentially learn a trivial encoding. Note that there is an intimate connection
between minimizing reconstruction error for auto-encoders and contrastive divergence training for
RBMs, as both can be shown to approximate a log-likelihood gradient (Bengio and Delalleau, 2009).

Thedenoising auto-encoder(Vincent et al., 2008; Seung, 1998; LeCun, 1987; Gallinari et al.,
1987) is a stochastic variant of the ordinary auto-encoder with the distinctive property that even with
a high capacity model, it cannot learn the identity mapping. A denoising autoencoder is explicitly
trained to denoise a corrupted version of its input. Its training criterion can also be viewed as a
variational lower bound on the likelihood of a specific generative model. Ithas been shown on an
array of data sets to perform significantly better than ordinary auto-encoders and similarly or better
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than RBMs when stacked into a deep supervised architecture (Vincent etal., 2008). Another way to
prevent regular auto-encoders with more code units than inputs to learn theidentity is to restrict the
capacity of the representation by imposing sparsity on the code (Ranzato etal., 2007, 2008).

We now summarize the training algorithm of the Stacked Denoising Auto-Encoders. More de-
tails are given by Vincent et al. (2008). Each denoising auto-encoderoperates on its inputsx, either
the raw inputs or the outputs of the previous layer. The denoising auto-encoder is trained to recon-
structx from a stochastically corrupted (noisy) transformation of it. The output ofeach denoising
auto-encoder is the “code vector”h(x), not to confuse with the reconstruction obtained by applying
the decoder to that code vector. In our experimentsh(x) = sigmoid(b+Wx) is an ordinary neural
network layer, with hidden unit biasesb, and weight matrixW. LetC(x) represent a stochastic cor-
ruption ofx. As done by Vincent et al. (2008), we setCi(x) = xi or 0, with a random subset (of a fixed
size) selected for zeroing. We have also considered a salt and peppernoise, where we select a ran-
dom subset of a fixed size and setCi(x) = Bernoulli(0.5). The denoised “reconstruction” is obtained
from the noisy input witĥx = sigmoid(c+WTh(C(x))), using biasesc and the transpose of the feed-
forward weightsW. In the experiments on images, both the raw inputxi and its reconstruction ˆxi

for a particular pixeli can be interpreted as a Bernoulli probability for that pixel: the probability
of painting the pixel as black at that location. We denote CE(x||x̂) = ∑i CE(xi ||x̂i) the sum of the
component-wise cross-entropy between the Bernoulli probability distributions associated with each
element ofx and its reconstruction probabilitiesx̂: CE(x||x̂) = −∑i (xi logx̂i +(1−xi) log(1− x̂i)).
The Bernoulli model only makes sense when the input components and their reconstruction are in
[0,1]; another option is to use a Gaussian model, which corresponds to a Mean Squared Error (MSE)
criterion.

With either DBN or SDAE, an output logistic regression layer is added after unsupervised
training. This layer uses softmax (multinomial logistic regression) units to estimateP(class|x) =
softmaxclass(a), whereai is a linear combination of outputs from the top hidden layer. The whole
network is then trained as usual for multi-layer perceptrons, to minimize the output (negative log-
likelihood) prediction error.

5.2 Data Sets

We experimented on three data sets, with the motivation that our experiments would help understand
previously presented results with deep architectures, which were mostly withthe MNIST data set
and variations (Hinton et al., 2006; Bengio et al., 2007; Ranzato et al., 2007; Larochelle et al., 2007;
Vincent et al., 2008):

MNIST the digit classification data set by LeCun et al. (1998), containing 60,000 training and
10,000 testing examples of 28x28 handwritten digits in gray-scale.

InfiniteMNIST a data set by Loosli et al. (2007), which is an extension ofMNIST from which
one can obtain a quasi-infinite number of examples. The samples are obtainedby performing
random elastic deformations of the originalMNIST digits. In this data set, there is only one set
of examples, and the models will be compared by their (online) performance on it.

Shapeset is a synthetic data set with a controlled range of geometric invariances. The underlying
task is binary classification of 10×10 images of triangles and squares. The examples show
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images of shapes with many variations, such as size, orientation and gray-level. The data set
is composed of 50000 training, 10000 validation and 10000 test images.4

5.3 Setup

The models used are

1. Deep Belief Networks containing Bernoulli RBM layers,

2. Stacked Denoising Auto-Encoders with Bernoulli input units, and

3. standard feed-forward multi-layer neural networks,

each with 1–5 hidden layers. Each hidden layer contains the same number ofhidden units, which
is a hyperparameter. The other hyperparameters are the unsupervisedand supervised learning rates,
theL2 penalty / weight decay,5 and the fraction of stochastically corrupted inputs (for the SDAE).
For MNIST, the number of supervised and unsupervised passes through the data (epochs) is 50 and
50 per layer, respectively. WithInfiniteMNIST , we perform 2.5 million unsupervised updates
followed by 7.5 million supervised updates.6 The standard feed-forward networks are trained using
10 million supervised updates. ForMNIST, model selection is done by choosing the hyperparameters
that optimize the supervised (classification) error on the validation set. ForInfiniteMNIST , we use
the average online error over the last million examples for hyperparameter selection. In all cases,
purely stochastic gradient updates are applied.

The experiments involve the training of deep architectures with a variable number of layers
with and without unsupervised pre-training. For a given layer, weights are initialized using random
samples from uniform[−1/

√
k,1/

√
k], wherek is the number of connections that a unit receives

from the previous layer (the fan-in). Either supervised gradient descent or unsupervised pre-training
follows.

In most cases (forMNIST), we first launched a number of experiments using a cross-product of
hyperparameter values7 applied to 10 different random initialization seeds. We then selected the
hyperparameter sets giving the best validation error for each combinationof model (with or without
pre-training), number of layers, and number of training iterations. Using these hyper-parameters,
we launched experiments using an additional 400 initialization seeds. ForInfiniteMNIST , only
one seed is considered (an arbitrarily chosen value).

In the discussions below we sometimes use the wordapparent local minimum to mean the
solution obtained after training, when no further noticeable progress seems achievable by stochastic
gradient descent. It is possible that these are not really near a true local minimum (there could be a
tiny ravine towards significant improvement, not accessible by gradient descent), but it is clear that
these end-points represent regions where gradient descent is stuck. Note also that when we write of
number of layers it is to be understood as the number ofhiddenlayers in the network.

4. The data set can be downloaded fromhttp://www.iro.umontreal.ca/ ˜ lisa/twiki/bin/view.cgi/Public/
ShapesetDataForJMLR .

5. A penalizing termλ||θ||22 is added to the supervised objective, whereθ are the weights of the network, andλ is a
hyper-parameter modulating the strength of the penalty.

6. The number of examples was chosen to be as large as possible, while still allowing for the exploration a variety of
hyper-parameters.

7. Number of hidden units∈ {400,800,1200}; learning rate∈ {0.1,0.05,0.02,0.01,0.005}; ℓ2 penalty coefficient
λ ∈ {10−4,10−5,10−6,0}; pre-training learning rate∈ {0.01,0.005,0.002,0.001,0.0005}; corruption probability
∈ {0.0,0.1,0.25,0.4}; tied weights∈ {yes,no}.
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6. The Effect of Unsupervised Pre-training

We start by a presentation of large-scale simulations that were intended to confirm some of the
previously published results about deep architectures. In the processof analyzing them, we start
making connections to our hypotheses and motivate the experiments that follow.

6.1 Better Generalization

When choosing the number of units per layer, the learning rate and the number of training iterations
to optimize classification error on the validation set, unsupervised pre-training gives substantially
lower test classification error than no pre-training, for the same depth or for smaller depth on various
vision data sets (Ranzato et al., 2007; Bengio et al., 2007; Larochelle et al., 2009, 2007; Vincent
et al., 2008) no larger than theMNIST digit data set (experiments reported from 10,000 to 50,000
training examples).

Such work was performed with only one or a handful of different random initialization seeds,
so one of the goals of this study was to ascertain the effect of the random seed used when initial-
izing ordinary neural networks (deep or shallow) and the pre-training procedure. For this purpose,
between 50 and 400 different seeds were used to obtain the graphics onMNIST.

Figure 1: Effect of depth on performance for a model trained (left) without unsupervised pre-
training and (right ) with unsupervised pre-training, for 1 to 5 hidden layers (networks
with 5 layers failed to converge to a solution, without the use of unsupervised pre-
training). Experiments onMNIST. Box plots show the distribution of errors associated
with 400 different initialization seeds (top and bottom quartiles in box, plus outliers be-
yond top and bottom quartiles). Other hyperparameters are optimized away (on the val-
idation set).Increasing depth seems to increase the probability of finding poor apparent
local minima.

Figure 1 shows the resulting distribution of test classification error, obtained with and without
pre-training, as we increase the depth of the network. Figure 2 shows these distributions as his-
tograms in the case of 1 and 4 layers. As can be seen in Figure 1, unsupervised pre-training allows
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classification error to go down steadily as we move from 1 to 4 hidden layers,whereas without
pre-training the error goes up after 2 hidden layers. It should also be noted that we were unable to
effectively train 5-layer models without use of unsupervised pre-training. Not only is the error ob-
tained on average with unsupervised pre-training systematically lower than without the pre-training,
it appears also more robust to the random initialization. With unsupervised pre-training the variance
stays at about the same level up to 4 hidden layers, with the number of bad outliers growing slowly.

Contrast this with the case without pre-training: the variance and number ofbad outliers grows
sharply as we increase the number of layers beyond 2. The gain obtainedwith unsupervised pre-
training is more pronounced as we increase the number of layers, as is the gain in robustness to
random initialization. This can be seen in Figure 2. The increase in error variance and mean for
deeper architectures without pre-training suggests thatincreasing depth increases the probability
of finding poor apparent local minima when starting from random initialization. It is also interest-
ing to note the low variance and small spread of errors obtained with 400 seeds with unsupervised
pre-training: it suggests thatunsupervised pre-training is robust with respect to the random
initialization seed (the one used to initialize parameters before pre-training).

Figure 2: Histograms presenting the test errors obtained onMNIST using models trained with or
without pre-training (400 different initializations each).Left : 1 hidden layer.Right: 4
hidden layers.

These experiments show that the variance of final test error with respect to initialization random
seed is larger without pre-training, and this effect is magnified for deeper architectures. It should
however be noted that there is a limit to the success of this technique: performance degrades for 5
layers on this problem.

6.2 Visualization of Features

Figure 3 shows the weights (called filters) of the first layer of the DBN before and after supervised
fine-tuning. For visualizing what units do on the 2nd and 3rd layer, we used the activation maxi-
mization technique described by Erhan et al. (2009): to visualize what a unit responds most to, the
method looks for the bounded input pattern that maximizes the activation of a given unit. This is an

637



ERHAN, BENGIO, COURVILLE , MANZAGOL , V INCENT AND BENGIO

optimization problem which is solved by performing gradient ascent in the space of the inputs, to
find a local maximum of the activation function. Interestingly, nearly the same maximal activation
input pattern is recovered from most random initializations of the input pattern.

Figure 3: Visualization of filters learned by a DBN trained onInfiniteMNIST . The top figures
contain a visualization of filters after pre-training, while the bottoms ones picture the
same units after supervised fine-tuning; from left to right: units from the 1st, 2nd and 3rd
layers, respectively.

For comparison, we have also visualized the filters of a network for 1–3 layers in which no pre-
training was performed (Figure 4). While the first layer filters do seem to correspond to localized
features, 2nd and 3rd layers are not as interpretable anymore. Qualitatively speaking, filters from
the bottom row of Figure 3 and those from Figure 4 have little in common, which is an interesting
conclusion in itself. In addition, there seems to be more interesting visual structures in the features
learned in networks with unsupervised pre-training.

Several interesting conclusions can be drawn from Figure 3. First, supervised fine-tuning (after
unsupervised pre-training), even with 7.5 million updates, does not change the weights in a signif-
icant way (at least visually): they seem stuck in a certain region of weightspace, and the sign of
weights does not change after fine-tuning (hence the same pattern is seenvisually). Second, dif-
ferent layers change differently: the first layer changes least, while supervised training has more
effect when performed on the 3rd layer. Such observations are consistent with the predictions made
by our hypothesis: namely that the early dynamics of stochastic gradient descent, the dynamics in-
duced by unsupervised pre-training, can “lock” the training in a region of the parameter space that
is essentially inaccessible for models that are trained in a purely supervisedway.

Finally, the features increase in complexity as we add more layers. First layer weights seem
to encode basic stroke-like detectors, second layer weights seem to detect digit parts, while top
layer weights detect entire digits. The features are more complicated as we add more layers, and
displaying only one image for each “feature” does not do justice to the non-linear nature of that
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feature. For example, it does not show theset of patternson which the feature is highly active (or
highly inactive).

While Figures 3–4 show only the filters obtained onInfiniteMNIST , the visualizations are
similar when applied onMNIST. Likewise, the features obtained with SDAE result in qualitatively
similar conclusions; Erhan et al. (2009) gives more details.

Figure 4: Visualization of filters learned by a network without pre-training,trained on
InfiniteMNIST . The filters are shown after supervised training; from left to right: units
from the 1st, 2nd and 3rd layers, respectively.

6.3 Visualization of Model Trajectories During Learning

Visualizing the learned features allows for a qualitative comparison of the training strategies for
deep architectures. However it is not useful for investigating how thesestrategies are influenced
by random initialization, as the features learned from multiple initializations look similar. If it
was possible for us to visualize a variety of models at the same time, it would allow us to explore
our hypothesis, and ascertain to what degree and how the set of pre-trained models (for different
random seeds) is far from the set of models without pre-training. Do these two sets cover very
different regions in parameter space? Are parameter trajectories getting stuck in many different
apparent local minima?

Unfortunately, it is not possible to directly compare parameter values of two architectures, be-
cause many permutations of the same parameters give rise to the same model. However, one can
take a functional approximation approach in which we compare the function (from input to output)
represented by each network, rather than comparing the parameters. The function is the infinite
ordered set of output values associated with all possible inputs, and it can be approximated with
a finite number of inputs (preferably plausible ones). To visualize the trajectories followed during
training, we use the following procedure. For a given model, we compute andconcatenate all its
outputs on the test set examples as one long vector summarizing where it stands in “function space”.
We get one such vector for each partially trained model (at each training iteration). This allows us
to plot many learning trajectories, one for each initialization seed, with or without pre-training. Us-
ing a dimensionality reduction algorithm we then map these vectors to a two-dimensional space for
visualization.8 Figures 5 and 6 present the results using dimensionality reduction techniques that

8. Note that we can and do project the models with and without pre-training at the same time, so as to visualize them in
the same space.
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focus respectively on local9 and global structure.10 Each point is colored according to the training
iteration, to help follow the trajectory movement.
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Figure 5: 2D visualizations with tSNE of the functions represented by 50 networks with and 50 net-
works without pre-training, as supervised training proceeds over MNIST. See Section 6.3
for an explanation. Color from dark blue to cyan and red indicates a progression in train-
ing iterations (training is longer without pre-training). The plot shows modelswith 2
hidden layers but results are similar with other depths.

What seems to come out of these visualizations is the following:

1. The pre-trained and not pre-trained models start andstay in different regions of function
space.

2. From the visualization focusing on local structure (Figure 5) we see that all trajectories of
a given type (with pre-training or without) initially move together. However, atsome point
(after about 7 epochs) the different trajectories (corresponding to different random seeds)
diverge (slowing down into elongated jets) and never get back close to each other (this is
more true for trajectories of networks without pre-training). This suggests that each trajectory
moves into a different apparent local minimum.11

9. t-Distributed Stochastic Neighbor Embedding, or tSNE, by van der Maaten and Hinton (2008), with the default pa-
rameters available in the public implementation:http://ict.ewi.tudelft.nl/ ˜ lvandermaaten/t-SNE.html .

10. Isomap by Tenenbaum et al. (2000), with one connected component.
11. One may wonder if the divergence points correspond to a turning point in terms of overfitting. As shall be seen in

Figure 8, the test error does not improve much after the 7th epoch, which reinforces this hypothesis.
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Figure 6: 2D visualization with ISOMAP of the functions represented by 50 networks with and
50 networks without pre-training, as supervised training proceeds over MNIST. See Sec-
tion 6.3 for an explanation. Color from dark blue to cyan indicates a progression in
training iterations (training is longer without pre-training). The plot shows models with
2 hidden layers but results are similar with other depths.

3. From the visualization focusing on global structure (Figure 6), we seethe pre-trained models
live in a disjoint and much smaller region of space than the not pre-trained models. In fact,
from the standpoint of the functions found without pre-training, the pre-trained solutions
look all the same, and their self-similarity increases (variance across seeds decreases) during
training, while the opposite is observed without pre-training. This is consistent with the
formalization of pre-training from Section 3, in which we described a theoretical justification
for viewing unsupervised pre-training as a regularizer; there, the probabilities of pre-traininig
parameters landing in a basin of attraction is small.

The visualizations of the training trajectories do seem to confirm our suspicions. It is difficult
to guarantee that each trajectory actually does end up in a different localminimum (corresponding
to a different function and not only to different parameters). However, all tests performed (visual
inspection of trajectories in function space, but also estimation of second derivatives in the directions
of all the estimated eigenvectors of the Jacobian not reported in details here) were consistent with
that interpretation.

We have also analyzed models obtained at the end of training, to visualize the training criterion
in the neighborhood of the parameter vectorθ∗ obtained. This is achieved by randomly sampling
a directionv (from the stochastic gradient directions) and by plotting the training criterionaround
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θ∗ in that direction, that is, atθ = θ∗ + αv, for α ∈ {−2.5,−2.4, . . . ,−0.1,0,0.1, . . .2.4,2.5}, and
v normalized (||v|| = 1). This analysis is visualized in Figure 7. The error curves look close to
quadratic and we seem to be near a local minimum in all directions investigated, as opposed to a
saddle point or a plateau. A more definite answer could be given by computing the full Hessian
eigenspectrum, which would be expensive. Figure 7 also suggests that the error landscape is a bit
flatter in the case of unsupervised pre-training, and flatter for deeper architectures.

Figure 7: Training errors obtained onShapeset when stepping in parameter space around a con-
verged model in 7 random gradient directions (stepsize of 0.1). Top: no pre-training.
Bottom: with unsupervised pre-training.Left : 1 hidden layer.Middle : 2 hidden lay-
ers. Right: 3 hidden layers. Compare also with Figure 8, where 1-layer networks with
unsupervised pre-training obtain higher training errors.

6.4 Implications

The series of results presented so far show a picture that is consistent with our hypothesis. Better
generalization that seems to be robust to random initializations is indeed achieved by pre-trained
models, which indicates that unsupervised learning ofP(X) is helpful in learningP(Y|X). The
function space landscapes that we visualized point to the fact that there are many apparent local
minima. The pre-trained models seem to end up in distinct regions of these error landscapes (and,
implicitly, in different parts of the parameter space). This is both seen from the function space
trajectories and from the fact that the visualizations of the learned features are qualitatively very
different from those obtained by models without pre-training.

7. The Role of Unsupervised Pre-training

The observations so far in this paper confirm that starting the supervisedoptimization from pre-
trained weights rather than from randomly initialized weights consistently yields better performing
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classifiers onMNIST. To better understand where this advantage came from, it is important to realize
that thesupervised objective being optimized is exactly the same in both cases. The gradient-based
optimization procedure is also the same. The only thing that differs is the startingpoint in parameter
space: either picked at random or obtained after unsupervised pre-training (which also starts from a
random initialization).

Deep architectures, since they are built from the composition of several layers of non-linearities,
yield an error surface that is non-convex and hard to optimize, with the suspected presence of many
local minima (as also shown by the above visualizations). A gradient-based optimization should
thus end in the apparent local minimum of whateverbasin of attractionwe started from. From
this perspective, the advantage of unsupervised pre-training could bethat it puts us in a region of
parameter space where basins of attraction run deeper than when pickingstarting parameters at
random. The advantage would be due to a betteroptimization.

Now it might also be the case that unsupervised pre-training puts us in a region of parameter
space in which training error is not necessarily better than when starting atrandom (or possibly
worse), but which systematically yields better generalization (test error).Such behavior would be
indicative of aregularization effect. Note that the two forms of explanation arenot necessarily
mutually exclusive.

Finally, a very simple explanation could be the most obvious one: namely the disparity in the
magnitude of the weights (or more generally, the marginal distribution of the weights) at the start of
the supervised training phase. We shall analyze (and rule out) this hypothesis first.

7.1 Experiment 1: Does Pre-training Provide a Better Conditioning Process for Supervised
Learning?

Typically gradient descent training of the deep model is initialized with randomlyassigned weights,
small enough to be in the linear region of the parameter space (close to zero for most neural network
and DBN models). It is reasonable to ask if the advantage imparted by havingan initial unsupervised
pre-training phase is simply due to the weights being larger and therefore somehow providing a
better “conditioning” of the initial values for the optimization process; we wanted to rule out this
possibility.

By conditioning, we mean the range and marginal distribution from which we draw initial
weights. In other words, could we get the same performance advantage as unsupervised pre-training
if we were still drawing the initial weights independently, but from a more suitable distribution than
the uniform[−1/

√
k,1/

√
k]? To verify this, we performed unsupervised pre-training, and computed

marginal histograms for each layer’s pre-trained weights and biases (one histogram per each layer’s
weights and biases). We then resampled new “initial” random weights and biases according to these
histograms (independently for each parameter), and performed fine-tuning from there. The resulting
parameters have the same marginal statistics as those obtained after unsupervised pre-training, but
not the same joint distribution.

Two scenarios can be imagined. In the first, the initialization from marginals would lead to
significantly better performance than the standard initialization (when no pre-training is used).
This would mean that unsupervised pre-training does provide a better marginal conditioning of

643



ERHAN, BENGIO, COURVILLE , MANZAGOL , V INCENT AND BENGIO

the weights. In the second scenario, the marginals would lead to performance similar to or worse
than that without pre-training.12

initialization. Uniform Histogram Unsup.pre-tr.
1 layer 1.81±0.07 1.94±0.09 1.41±0.07
2 layers 1.77±0.10 1.69±0.11 1.37±0.09

Table 1: Effect of various initialization strategies on 1 and 2-layer architectures: independent uni-
form densities (one per parameter), independent densities from the marginals after un-
supervised pre-training, or unsupervised pre-training (which samplesthe parameters in a
highly dependent way so that they collaborate to make up good denoising auto-encoders.)
Experiments onMNIST, numbers are mean and standard deviation of test errors (across
different initialization seeds).

What we observe in Table 1 seems to fall within the first scenario. However, while initializing
the weights to match the marginal distributions at the end of pre-training appears to slightly improve
the generalization error on MNIST for 2 hidden layers, the difference isnot significant and it is far
from fully accounting for the discrepancy between the pre-trained and non-pre-trained results.

This experiment constitutes evidence against the preconditioning hypothesis, but does not ex-
clude either the optimization hypothesis or the regularization hypothesis.

7.2 Experiment 2: The Effect of Pre-training on Training Error

The optimization and regularization hypotheses diverge on their prediction on how unsupervised
pre-training should affect the training error: the former predicts that unsupervised pre-training
should result in a lower training error, while the latter predicts the opposite. To ascertain the influ-
ence of these two possible explanatory factors, we looked at the test cost (Negative Log Likelihood
on test data) obtained as a function of the training cost, along the trajectory followed in parameter
space by the optimization procedure. Figure 8 shows 400 of these curvesstarted from a point in
parameter space obtained from random initialization, that is, without pre-training (blue), and 400
started from pre-trained parameters (red).

The experiments were performed for networks with 1, 2 and 3 hidden layers. As can be seen
in Figure 8, while for 1 hidden layer, unsupervised pre-training reaches lower training cost than no
pre-training, hinting towards a better optimization, this is not necessarily the case for the deeper
networks. The remarkable observation is rather that,at a same training cost level, the pre-trained
models systematically yield a lower test costthan the randomly initialized ones. The advantage
appears to be one ofbetter generalization rather than merely a better optimization procedure.

This brings us to the following result: unsupervised pre-training appearsto have a similar effect
to that of a good regularizer or a good “prior” on the parameters, even though no explicit regular-
ization term is apparent in the cost being optimized. As we stated in the hypothesis, it might be
reasoned that restricting the possible starting points in parameter space to those that minimize the
unsupervised pre-training criterion (as with the SDAE), does in effect restrict the set of possible

12. We observed that the distribution of weights after unsupervised pre-training is fat-tailed. It is conceivable that sam-
pling from such a distribution in order to initialize a deep architecture might actually hurt the performance of a deep
architecture (compared to random initialization from a uniform distribution).
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Figure 8: Evolution without pre-training (blue) and with pre-training (red)on MNIST of the log of
the test NLL plotted against the log of the train NLL as training proceeds. Each of the
2× 400 curves represents a different initialization. The errors are measured after each
pass over the data. The rightmost points were measured after the first pass of gradient
updates. Since training error tends to decrease during training, the trajectories run from
right (high training error) to left (low training error). Trajectories movingup (as we go
leftward) indicate a form of overfitting. All trajectories are plotted on top of each other.

final configurations for parameter values. Like regularizers in general, unsupervised pre-training (in
this case, with denoising auto-encoders) might thus be seen as decreasing the variance and introduc-
ing a bias (towards parameter configurations suitable for performing denoising). Unlike ordinary
regularizers, unsupervised pre-training does so in a data-dependent manner.

7.3 Experiment 3: The Influence of the Layer Size

Another signature characteristic of regularization is that the effectiveness of regularization increases
as capacity (e.g., the number of hidden units) increases, effectively trading off one constraint on the
model complexity for another. In this experiment we explore the relationship between the number of
units per layer and the effectiveness of unsupervised pre-training. The hypothesis that unsupervised
pre-training acts as a regularizer would suggest that we should see a trend of increasing effectiveness
of unsupervised pre-training as the number of units per layer are increased.

We trained models onMNIST with and without pre-training using increasing layer sizes: 25,
50, 100, 200, 400, 800 units per layer. Results are shown in Figure 9. Qualitatively similar results
were obtained onShapeset. In the case of SDAE, we were expecting the denoising pre-training
procedure to help classification performance most for large layers; this isbecause the denoising
pre-training allows useful representations to be learned in the over-complete case, in which a layer
is larger than its input (Vincent et al., 2008). What we observe is a more systematic effect: while
unsupervised pre-training helps for larger layers and deeper networks, it also appears to hurt for too
small networks.

Figure 9 also shows that DBNs behave qualitatively like SDAEs, in the sensethat unsupervised
pre-training architectures with smaller layers hurts performance. Experiments onInfiniteMNIST
reveal results that are qualitatively the same. Such an experiment seeminglypoints to a re-verification
of the regularization hypothesis. In this case, it would seem that unsupervised pre-training acts as an
additional regularizer for both DBN and SDAE models—on top of the regularization provided by
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Figure 9: Effect of layer size on the changes brought by unsupervised pre-training, for networks
with 1, 2 or 3 hidden layers. Experiments onMNIST. Error bars have a height of two
standard deviations (over initialization seed). Pre-training hurts for smallerlayer sizes
and shallower networks, but it helps for all depths for larger networks.

the small size of the hidden layers. As the model size decreases from 800 hidden units, the general-
ization error increases, and it increases more with unsupervised pre-training presumably because of
the extra regularization effect: small networks have a limited capacity alreadyso further restricting
it (or introducing an additional bias) can harm generalization. Such a result seems incompatible
with a pure optimization effect. We also obtain the result that DBNs and SDAEs seem to have
qualitatively similar effects as pre-training strategies.

The effect can be explained in terms of the role of unsupervised pre-training as promoting input
transformations (in the hidden layers) that are useful at capturing the mainvariations in the input
distributionP(X). It may be that only a small subset of these variations are relevant for predicting
the class labelY. When the hidden layers are small it is less likely that the transformations for
predictingY are included in the lot learned by unsupervised pre-training.

7.4 Experiment 4: Challenging the Optimization Hypothesis

Experiments 1–3 results are consistent with the regularization hypothesis and Experiments 2–3
would appear to directly support the regularization hypothesis over the alternative—that unsuper-
vised pre-training aids in optimizing the deep model objective function.

In the literature there is some support for the optimization hypothesis. Bengio et al. (2007)
constrained the top layer of a deep network to have 20 units and measured the training error of
networks with and without pre-training. The idea was to prevent the networks from overfitting the
training error simply with the top hidden layer, thus to make it clearer whether some optimization
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effect (of the lower layers) was going on. The reported training and test errors were lower for pre-
trained networks. One problem with the experimental paradigm used by Bengio et al. (2007) is their
use of early stopping. This is problematic because, as previously mentioned, early stopping is itself
a regularizer, and it can influence greatly the training error that is obtained. It is conceivable that if
Bengio et al. (2007) had run the models to convergence, the results couldhave been different. We
needed to verify this.

Figure 10 shows what happens without early stopping. The training error is still higher for
pre-trained networks even though the generalization error is lower. Thisresult now favors the regu-
larization hypothesis against the optimization story. What may have happenedis that early stopping
prevented the networks without pre-training from moving too much towards their apparent local
minimum.

Figure 10: ForMNIST, a plot of the log(train NLL) vs. log(test NLL) at each epoch of training.The
top layer is constrained to 20 units.

7.5 Experiment 5: Comparing pre-training to L1 and L2 regularization

An alternative hypothesis would be that classical ways of regularizing could perhaps achieve the
same effect as unsupervised pre-training. We investigated the effect of L1 andL2 regularization
(i.e., adding a||θ||1 or ||θ||22 term to the supervised objective function) in a network without pre-
training. We found that while in the case ofMNIST a small penalty can in principle help, the gain is
nowhere near as large as it is with pre-training. ForInfiniteMNIST , the optimal amount ofL1 and
L2 regularization is zero.13

13. Which is consistent with the classical view of regularization, in which its effect should diminish as we add more and
more data.
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This is not an entirely surprising finding: not all regularizers are created equal and these results
are consistent with the literature on semi-supervised training that shows thatunsupervised learning
can be exploited as a particularly effective form of regularization.

7.6 Summary of Findings: Experiments 1-5

So far, the results obtained from the previous experiments point towards apretty clear explanation
of the effect of unsupervised pre-training: namely, that its effect is a regularization effect. We have
seen that it is not simply sufficient to sample random weights with the same magnitude: the (data-
dependent) unsupervised initialization is crucial. We have also observed that canonical regularizers
(L1/L2 penalties on the weights) do not achieve the same level of performance.

The most compelling pieces of evidence in support of the regularization hypothesis are Figures
8 and 9. The alternative explanation—that unsupervised pre-training has an optimization effect—
suggested by Bengio et al. (2007) doesn’t seem to be supported by our experimental setup.

8. The Online Learning Setting

Our hypothesis included not only the statistical/phenomenological hypothesisthat unsupervised
pre-training acted as a regularizer, but also contains a mechanism for how such behavior arises both
as a consequence of the dynamic nature of training—following a stochastic gradient through two
phases of training and as a consequence of the non-convexity of the supervised objective function.

In our hypothesis, we posited that early examples induce changes in the magnitude of the
weights that increase the amount of non-linearity of the network, which in turn decreases the num-
ber of regions accessible to the stochastic gradient descent procedure. This means that the early
examples (be they pre-training examples or otherwise) determine the basin ofattraction for the re-
mainder of training; this also means that the early examples have a disproportionate influence on
the configuration of parameters of the trained models.

One consequence to the hypothesized mechanism is that we would predict that in the online
learning setting with unbounded or very large data sets, the behavior of unsupervised pre-training
would diverge from the behavior of a canonical regularizer (L1/L2). This is because the effectiveness
of a canonical regularizerdecreasesas the data set grows, whereas the effectiveness of unsupervised
pre-training as a regularizer ismaintained as the data set grows.

Note that stochastic gradient descent in online learning is a stochastic gradient descent optimiza-
tion of the generalization error, so good online error in principle implies that we are optimizing well
the generalization error. Indeed, each gradient∂L(x,y)

∂θ for example(x,y) (with L(x,y) the supervised
loss with inputx and labely) sampled from the true generating distributionP(x,y) is an unbiased
Monte-Carlo estimator of the true gradient of generalization error, that is,∑y

R

x
∂L(x,y)

∂θ P(x,y)dx.
In this section we empirically challenge this aspect of the hypothesis and showthat the evidence

does indeed support our hypothesis over what is more typically expectedfrom a regularizer.

8.1 Experiment 6: Effect of Pre-training with Very Large Data Sets

The results presented here are perhaps the most surprising findings ofthis paper. Figure 11 shows the
online classification error (on the next block of examples, as a moving average) for 6 architectures
that are trained onInfiniteMNIST : 1 and 3-layer DBNs, 1 and 3-layer SDAE, as well as 1 and
3-layer networks without pre-training.
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Figure 11: Comparison between 1 and 3-layer networks trained onInfiniteMNIST . Online classi-
fication error, computed as an average over a block of last 100,000 errors.

We can draw several observations from these experiments. First, 3-layer networks without
pre-training are worse at generalization, compared to the 1-layer equivalent. This confirms the
hypothesis that even in an online setting, optimization of deep networks is harder than shallow
ones. Second, 3-layer SDAE models seem to generalize better than 3-layer DBNs. Finally and
most importantly, the pre-training advantage does not vanish as the number of training examples
increases, on the contrary.

Note that the number of hidden units of each model is a hyperparameter.14 So theoretical results
suggest that 1-layer networks without pre-training should in principle beable to represent the input
distribution as capacity and data grow. Instead, without pre-training, the networks are not able to
take advantage of the additional capacity, which again points towards the optimization explanation.
It is clear, however, thatthe starting point of the non-convex optimization matters, even for
networks that are seemingly “easier” to optimize (1-layer ones), which supports our hypothesis.

Another experiment that shows the effects of large-scale online stochastic non-convex optimiza-
tion is shown in Figure 12. In the setting ofInfiniteMNIST , we compute the error on thetraining
set, in the same order that we presented the examples to the models. We observe several interesting
results: first, note that both models are better at classifying more recently seen examples. This is a
natural effect of stochastic gradient descent with a constant learningrate (which gives exponentially
more weight to recent examples). Note also that examples at the beginning of training are essen-
tially like test examples for both models, in terms of error. Finally, we observe that the pre-trained

14. This number was chosen individually for each model s.t. the erroron the last 1 million examples is minimized. In
practice, this meant 2000 units for 1-layer networks and 1000 units/layerfor 3-layer networks.
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Figure 12: Error of 1-layer network with RBM pre-training and without, onthe 10 million examples
used for training it. The errors are calculated in the same order (from leftto right, above)
as the examples were presented during training. Each error bar corresponds to a block
of consecutive training examples.

model is better across the boardon the training set. This fits well with the optimization hypothesis,
since it shows that unsupervised pre-training has an optimization effect.

What happens in this setting is that the training and generalization errors converge as the em-
pirical distribution (defined by the training set) converges to the true data distribution. These results
show that the effectiveness of unsupervised pre-training does not diminish with increasing data set
sizes. This would be unexpected from a superficial understanding of unsupervised pre-training as
a regularization method. However it is entirely consistent with our interpretation, stated in our
hypothesis, of the role of unsupervised pre-training in the online setting withstochastic gradient
descent training on a non-convex objective function.

8.2 Experiment 7: The Effect of Example Ordering

The hypothesized mechanism implies, due to the dynamics of learning—the increase in weight mag-
nitude and non-linearity as training proceeds, as well as the dependenceof the basin of attraction on
early data—that, when training with stochastic gradient descent, we should see increased sensitivity
to early examples. In the case ofInfiniteMNIST we operate in an online stochastic optimization
regime, where we try to find a local minimum of a highly non-convex objective function. It is then
interesting to study to what extent the outcome of this optimization is influenced by the examples
seen at different points during training, and whether the early examples have a stronger influence
(which would not be the case with a convex objective).

To quantify the variance of the outcome with respect to training samples at different points dur-
ing training, and to compare these variances for models with and without pre-training, we proceeded
with the following experiment. Given a data set with 10 million examples, we vary (by resampling)
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the first million examples (across 10 different random draws, sampling a different set of 1 million
examples each time) and keep the other ones fixed. After training the (10) models, we measure the
variance (across the 10 draws) of theoutputof the networks on a fixed test set (i.e., we measure the
variance in function space). We then vary the next million examples in the same fashion, and so on,
to see how much each of the ten parts of the training set influenced the final function.

Figure 13: Variance of the output of a trained network with 1 layer. The variance is computed as
a function of the point at which we vary the training samples. Note that the 0.25 mark
corresponds to the start of pre-training.

Figure 13 shows the outcome of such an analysis. The samples at the beginning15 do seem to
influence the output of the networks more than the ones at the end. However, this variance islower
for the networks that have been pre-trained. In addition to that, one should note that the variance of
pre-trained network at 0.25 (i.e., the variance of the output as a function of the first samples used for
supervised training) islower than the variance of the supervised network at 0.0. Such results imply
that unsupervised pre-training can be seen as a sort of variance reduction technique, consistent with
a regularization hypothesis. Finally, both networks are more influenced bythe last examplesused
for optimization, which is simply due to the fact that we use stochastic gradient with a constant
learning rate, where the most recent examples’ gradient has a greater influence.

These results are consistent with what our hypothesis predicts: both the fact that early examples
have greater influence (i.e., the variance is higher) and that pre-trainedmodels seem to reduce this
variance are in agreement with what we would have expected.

15. Which areunsupervisedexamples, for the red curve, until the 0.25 mark in Figure 13.
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8.3 Experiment 8: Pre-training only k layers

From Figure 11 we can see that unsupervised pre-training makes quite a difference for 3 layers, on
InfiniteMNIST . In Figure 14 we explore the link between depth and unsupervised pre-training in
more detail. The setup is as follows: for bothMNIST and InfiniteMNIST we pre-train only the
bottomk layers and randomly initialize the topn− k layers in the usual way. In this experiment,
n = 3 and we varyk from 0 (which corresponds to a network with no pre-training) tok = n (which
corresponds to the normal pre-trained case).

For MNIST, we plot the log(train NLL) vs. log(test NLL) trajectories, where each point corre-
sponds to a measurement after a certain number of epochs. The trajectories go roughly from the
right to left and from top to bottom, corresponding to the lowering of the training and test errors.
We can also see that models overfit from a certain point onwards.

Figure 14: On the left: for MNIST, a plot of the log(train NLL) vs. log(test NLL) at each epoch of
training. We pre-train the first layer, the first two layers and all three layers using RBMs
and randomly initialize the other layers; we also compare with the network whoselayers
are all randomly initialized.On the right: InfiniteMNIST , the online classification
error. We pre-train the first layer, the first two layers or all three layers using denoising
auto-encoders and leave the rest of the network randomly initialized.

For InfiniteMNIST , we simply show the online error. The results are ambiguous w.r.t the
difficulty of optimizing the lower layers versus the higher ones. We would have expected that the
largest incremental benefit came from pre-training the first layer or first two layers. It is true for
the first two layers, but not the first. As we pre-train more layers, the models become better at
generalization. In the case of the finiteMNIST, note how the final training error (after the same
number of epochs) becomesworsewith pre-training of more layers. This clearly brings additional
support to the regularization explanation.
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9. Discussion and Conclusions

We have shown that unsupervised pre-training adds robustness to a deep architecture. The same set
of results also suggests that increasing the depth of an architecture that isnot pre-trained increases
the probability of finding poor apparent local minima. Pre-trained networksgive consistently better
generalization. Our visualizations point to the observations that pre-trained networks learn qual-
itatively different features (if networks are visualized in the weight space) compared to networks
without pre-training. Moreover, the trajectories of networks with different initialization seeds seem
to fall into many distinct apparent local minima, which are again different (and seemingly far apart)
depending on whether we use pre-training or not.

We have shown that unsupervised pre-training is not simply a way of gettinga good initial
marginal distribution, and that it captures more intricate dependencies between parameters. One of
our findings is that deep networks with unsupervised pre-training seem toexhibit some properties of
a regularizer: with small enough layers, pre-trained deep architecturesare systematically worse than
randomly initialized deep architectures. Moreover, when the layers are bigenough, the pre-trained
models obtain worse training errors, but better generalization performance. Additionally, we have
re-done an experiment which purportedly showed that unsupervised pre-training can be explained
with an optimization hypothesis and observed a regularization effect instead. We also showed that
classical regularization techniques (such asL1/L2 penalties on the network weights) cannot achieve
the same performance as unsupervised pre-training, and that the effect of unsupervised pre-training
does not go away with more training data, so if unsupervised pre-training is aregularizer, it is
certainly of a rather different kind.

The two unsupervised pre-training strategies considered—denoising auto-encoders and Restricted
Boltzmann Machines—seem to produce qualitatively similar observations. We have observed that,
surprisingly, the pre-training advantage is present even in the case of really large training sets, point-
ing towards the conclusion that the starting point in the non-convex optimizationproblem is indeed
quite important; a fact confirmed by our visualizations of filters at various levels in the network.
Finally, the other important set of results show that unsupervised pre-training acts like a variance
reduction technique, yet a network with pre-training has a lower training error on a very large data
set, which supports an optimization interpretation of the effect of pre-training.

How do we make sense of all these results? The contradiction between whatlooks like regular-
ization effects and what looks like optimization effects appears, on the surface, unresolved. Instead
of sticking to these labels, we attempted to draw a hypothesis, described in Section 3 about the
dynamics of learning in an architecture that is trained using two phases (unsupervised pre-training
and supervised fine-tuning), which we believe to be consistent with all the above results.

This hypothesis suggests that there are consequences of the non-convexity of the supervised
objective function, which we observed in various ways throughout ourexperiments. One of these
consequences is that early examples have a big influence on the outcome oftraining and this is one
of the reasons why in a large-scale setting the influence of unsupervisedpre-training is still present.
Throughout this paper, we have delved on the idea that the basin of attraction induced by the early
examples (in conjunction with unsupervised pre-training) is, for all practical purposes, a basin from
which supervised training does not escape.

This effect can be observed from the various visualizations and performance evaluations that
we made.Unsupervised pre-training,as a regularizer that only influences the starting point of
supervised training, has an effect that, contrary to classical regularizers, does not disappear with
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more data(at least as far as we can see from our results). Basically, unsupervised pre-training favors
hidden units that compute features of the inputX that correspond to major factors of variation in
the trueP(X). Assuming that some of these are near features useful at predicting variations inY,
unsupervised pre-training sets up the parameters near a solution of low predictive generalization
error.

One of the main messages that our results imply is that the optimization of a non-convex ob-
jective function with stochastic gradient descent presents challenges for analysis, especially in a
regime with large amounts of data. Our analysis so far shows that it is possiblefor networks that
are trained in such a regime to be influenced more by early examples. This canpose problems in
scenarios where we would like our networks to be able to capture more of theinformation in later
examples, that is, when training from very large data sets and trying to capture a lot of information
from them.

One interesting realization is that with a small training set, we do not usually put alot of impor-
tance on minimizing the training error, because overfitting is a major issue; the training error is not
a good way to distinguish between the generalization performance of two models. In that setting,
unsupervised pre-training helps to find apparent local minima that have better generalization error.
With a large training set, as we saw in Figure 12, the empirical and true distributions converge. In
such a scenario,finding a better apparent local minimum will matter and stronger (better) opti-
mization strategies should have a significant impact on generalization whenthe training set is very
large. Note also that it would be interesting to extend our experimental techniques tothe problem
of training deep auto-encoders (with a bottleneck), where previous results (Hinton and Salakhutdi-
nov, 2006) show that not only test error but also training error is greatly reduced by unsupervised
pre-training, which is a strong indicator of an optimization effect. We hypothesize that the pres-
ence of the bottleneck is a crucial element that distinguishes the deep auto-encoders from the deep
classifiers studied here.

In spite of months of CPU time on a cluster devoted to the experiments described here (which
is orders of magnitude more than most previous work in this area), more couldcertainly be done
to better understand these effects. Our original goal was to have well-controlled experiments with
well understood data sets. It was not to advance a particular algorithm but rather to try to better
understand a phenomenon that has been well documented elsewhere. Nonetheless, our results are
limited by the data sets used and it is plausible that different conclusions couldbe drawn, should the
same experiments be carried out on other data.

Our results suggest that optimization in deep networks is a complicated problemthat is influ-
enced in great part by the early examples during training. Future work should clarify this hypothesis.
If it is true and we want our learners to capture really complicated distributions from very large train-
ing sets, it may mean that we should consider learning algorithms that reduce the effect of the early
examples, allowing parameters to escape from the attractors in which current learning dynamics get
stuck.

The observations reported here suggest more detailed explanations thanthose already discussed,
which could be tested in future work. We hypothesize that the factors of variation present in the in-
put distribution are disentangled more and more as we go from the input layerto higher-levels of the
feature hierarchy. This is coherent with observations of increasing invariance to geometric transfor-
mations in DBNs trained on images (Goodfellow et al., 2009), as well as by visualizing the varia-
tions in input images generated by sampling from the model (Hinton, 2007; Susskind et al., 2008),
or when considering the preferred input associated with different unitsat different depths (Lee et al.,
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2009; Erhan et al., 2009). As a result, during early stages of learning,the upper layers (those that
typically learn quickly) would have access to a more robust representationof the input and are less
likely to be hindered by the entangling of factors variations present in the input. If this disentan-
gling hypothesis is correct, it would help to explain how unsupervised pre-training can address the
chicken-and-egg issue explained in Section 2: the lower layers of a supervised deep architecture
need the upper layers to define what they should extract, and vice-versa. Instead, the lower layers
can extract robust and disentangled representations of the factors ofvariation and the upper layers
select and combine the appropriate factors (sometimes not all at the top hidden layer). Note that
as factors of variation are disentangled, it could also happen that some ofthem are not propagated
upward (before fine-tuning), because RBMs do not try to representin their hidden layer input bits
that are independent.

To further explain why smaller hidden layers yield worse performance with pre-training than
without (Figure 9), one may hypothesize further that, for some data sets, the leading factors of
variation present inP(X) (presumably the only ones captured in a smaller layer) are less predictive
of Y than random projections16 can be, precisely because of the hypothesized disentangling effect.
With enough hidden units, unsupervised pre-training may extract among thelarger set of learned
features some that are highly predictive ofY (more so than random projections). This additional
hypothesis could be tested by measuring the mutual information between each hidden unit and the
object categories (as done by Lee et al., 2009), as the number of hiddenunits is varied (like in
Figure 9). It is expected that the unit with the most mutual information will be lessinformative with
pre-training when the number of hidden units is too small, and more informative with pre-training
when the number of hidden units is large enough.

Under the hypothesis that we have proposed in Section 3, the following result is unaccounted
for: in Figure 8(a), training error is lower with pre-training when there is only one hidden layer,
but worse with more layers. This may be explained by the following additional hypothesis. Al-
though each layer extracts information aboutY in some of its features, it is not guaranteed that all
of that information is preserved when moving to higher layers. One may suspect this in particular
for RBMs, which would not encode in their hidden layer any input bits that would be marginally
independent of the others, because these bits would be explained by the visible biases: perfect dis-
entangling ofY from the other factors of variation inX may yield marginally independent bits about
Y. Although supervised fine-tuning should help to bubble up that information towards the output
layer, it might be more difficult to do so for deeper networks, explaining theabove-stated feature of
Figure 8. Instead, in the case of a single hidden layer, less information about Y would have been
dropped (if at all), making the job of the supervised output layer easier. This is consistent with
earlier results (Larochelle et al., 2009) showing that for several data sets supervised fine-tuning sig-
nificantly improves classification error, when the output layer only takes input from the top hidden
layer. This hypothesis is also consistent with the observation made here (Figure 1) that unsupervised
pre-training actually does not help (and can hurt) for too deep networks.

In addition to exploring the above hypotheses, future work should includean investigation of
the connection between the results presented in this paper and by Hinton andSalakhutdinov (2006),
where it seems to be hard to obtain a good training reconstruction error with deep auto-encoders (in
an unsupervised setting) without performing pre-training. Other avenues for future work include
the analysis and understanding of deep semi-supervised techniques where one does not separate

16. Meaning the random initialization of hidden layers.
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between the pre-training phase and the supervised phase, such as work by Weston et al. (2008) and
Larochelle and Bengio (2008). Such algorithms fall more squarely into the realm of semi-supervised
methods. We expect that analyses similar to the ones we performed would be potentially harder, but
perhaps revealing as well.

Many open questions remain towards understanding and improving deep architectures. Our
conviction is that devising improved strategies for learning in deep architectures requires a more
profound understanding of the difficulties that we face with them. This workhelps with such under-
standing via extensive simulations and puts forward a hypothesis explainingthe mechanisms behind
unsupervised pre-training, which is well supported by our results.
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Patrick Gallinari, Yann LeCun, Sylvie Thiria, and Francoise Fogelman-Soulie. Memoires associa-
tives distribuees. InProceedings of COGNITIVA 87, Paris, La Villette, 1987.

Ian Goodfellow, Quoc Le, Andrew Saxe, and Andrew Ng. Measuring invariances in deep networks.
In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,Advances in
Neural Information Processing Systems 22, pages 646–654. 2009.

Raia Hadsell, Ayse Erkan, Pierre Sermanet, Marco Scoffier, Urs Muller, and Yann LeCun. Deep
belief net learning in a long-range vision system for autonomous off-road driving. In Proc.
Intelligent Robots and Systems (IROS’08), pages 628–633, 2008.

Johan H̊astad. Almost optimal lower bounds for small depth circuits. InProceedings of the 18th
annual ACM Symposium on Theory of Computing, pages 6–20, Berkeley, California, 1986. ACM
Press.

Johan H̊astad and Mikael Goldmann. On the power of small-depth threshold circuits.Computa-
tional Complexity, 1:113–129, 1991.

Geoffrey E. Hinton. Training products of experts by minimizing contrastivedivergence.Neural
Computation, 14:1771–1800, 2002.

Geoffrey E. Hinton. To recognize shapes, first learn to generate images. In Paul Cisek, Trevor
Drew, and John Kalaska, editors,Computational Neuroscience: Theoretical Insights into Brain
Function. Elsevier, 2007.

Geoffrey E. Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data with neural
networks.Science, 313(5786):504–507, July 2006.

657



ERHAN, BENGIO, COURVILLE , MANZAGOL , V INCENT AND BENGIO

Goeffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learningalgorithm for deep belief
nets.Neural Computation, 18:1527–1554, 2006.

Hugo Larochelle and Yoshua Bengio. Classification using discriminative restricted Boltzmann ma-
chines. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors,Proceedings
of the Twenty-fifth International Conference on Machine Learning (ICML’08), pages 536–543.
ACM, 2008.

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An em-
pirical evaluation of deep architectures on problems with many factors of variation. In Int. Conf.
Mach. Learn., pages 473–480, 2007.

Hugo Larochelle, Yoshua Bengio, Jerome Louradour, and Pascal Lamblin. Exploring strategies for
training deep neural networks.The Journal of Machine Learning Research, 10:1–40, January
2009.

Julia A. Lasserre, Christopher M. Bishop, and Thomas P. Minka. Principled hybrids of generative
and discriminative models. InProceedings of the Computer Vision and Pattern Recognition
Conference (CVPR’06), pages 87–94, Washington, DC, USA, 2006. IEEE Computer Society.
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