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Abstract

Much recent research has been devoted to learning algaritmadeep architectures such as Deep
Belief Networks and stacks of auto-encoder variants, witpressive results obtained in several
areas, mostly on vision and language data sets. The beéisrebtained on supervised learning
tasks involve an unsupervised learning component, usiraly unsupervised pre-training phase.
Even though these new algorithms have enabled trainingmeells, many questions remain as to
the nature of this difficult learning problem. The main gigsinvestigated here is the following:
how does unsupervised pre-training work? Answering thisstjans is important if learning in
deep architectures is to be further improved. We proposerakgxplanatory hypotheses and test
them through extensive simulations. We empirically shosiitifluence of pre-training with respect
to architecture depth, model capacity, and number of ingiekamples. The experiments confirm
and clarify the advantage of unsupervised pre-training fEsults suggest that unsupervised pre-
training guides the learning towards basins of attractfonioima that support better generalization
from the training data set; the evidence from these resufiparts a regularization explanation for
the effect of pre-training.

Keywords: deep architectures, unsupervised pre-training, deegflmeiworks, stacked denoising
auto-encoders, non-convex optimization

1. Introduction

Deep learning methods aim at learning feature hierarchies with featerashigher levels of the
hierarchy formed by the composition of lower level features. They incluaimieg methods for a
wide array ofdeep architectureBengio, 2009 provides a survey), including neural networks with
many hidden layers (Bengio et al., 2007; Ranzato et al., 2007; Vincet, &008; Collobert and
Weston, 2008) and graphical models with many levels of hidden variablesofHet al., 2006),
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among others (Zhu et al., 2009; Weston et al., 2008). Theoretical ré¥atis1985; Hstad, 1986;
Hastad and Goldmann, 1991; Bengio et al., 2006), reviewed and digdoggengio and LeCun
(2007), suggest that in order to learn the kind of complicated functionsamarepresent high-level
abstractions (e.g., in vision, language, and other Al-level tasks), openaeideep architectures
The recent surge in experimental work in the field seems to support thisinatioumulating evi-
dence that in challenging Al-related tasks—such as computer vision iBengl., 2007; Ranzato
etal., 2007; Larochelle et al., 2007; Ranzato et al., 2008; Lee et ab; Rgbahi et al., 2009; Osin-
dero and Hinton, 2008), natural language processing (NLP) (Catlapel Weston, 2008; Weston
et al., 2008), robotics (Hadsell et al., 2008), or information retrievalgl@utdinov and Hinton,
2007; Salakhutdinov et al., 2007)—deep learning methods significantlpestdrm comparable
but shallow competitors, and often match or beat the state-of-the-art.

These recent demonstrations of the potential of deep learning algorithreswalgeved despite
the serious challenge of training models with many layers of adaptive paramétevirtually all
instances of deep learning, the objective function is a highly non-cdowetion of the parameters,
with the potential for many distindbcal minimain the model parameter space. The principal
difficulty is that not all of these minima provide equivalent generalizatioarsrand, we suggest,
that for deep architectures, the standard training schemes (baseddomranitialization) tend to
place the parameters in regions of the parameters space that generafigeqas was frequently
observed empirically but rarely reported (Bengio and LeCun, 2007).

The breakthrough to effective training strategies for deep architectame in 2006 with
the algorithms for training deep belief networks (DBN) (Hinton et al., 200®) stacked auto-
encoders (Ranzato et al., 2007; Bengio et al., 2007), which are atllas a similar approach:
greedy layer-wise unsupervised pre-training followed by superfiseetuning. Each layer is pre-
trained with an unsupervised learning algorithm, learning a nonlinear tnanafion of its input
(the output of the previous layer) that captures the main variations in its ifjnig. unsupervised
pre-training sets the stage for a final training phase where the dedfeatate is fine-tuned with
respect to a supervised training criterion with gradient-based optimizatibile ¥ie improvement
in performance of trained deep models offered by the pre-training sgredeémpressive, little is
understood about the mechanisms underlying this success.

The objective of this paper is to explore, through extensive experimemtatov unsupervised
pre-training works to render learning deep architectures more effeatid why they appear to
work so much better than traditional neural network training methods. Hrera few reasonable
hypotheses why unsupervised pre-training might work. One possibilityaisutiisupervised pre-
training acts as a kind of network pre-conditioner, putting the parametees/aiuthe appropriate
range for further supervised training. Another possibility, suggestdgelmgio et al. (2007), is that
unsupervised pre-training initializes the model to a point in parameter spatcgothehow renders
the optimization process more effective, in the sense of achieving a lower rmnafilne empirical
cost function.

Here, we argue that our experiments support a view of unsupervisetigining as an unusual
form of regularization minimizing variance and introducing bias towards configurations of the pa-
rameter space that are useful for unsupervised learning. Thisgoéikspplaces unsupervised pre-
training well within the family of recently developed semi-supervised methotls. uhsupervised
pre-training approach is, however, uniqgue among semi-superviseityatrategies in that it acts by
defining a particular initialization point for standard supervised trainingerattan either modifying
the supervised objective function (Barron, 1991) or explicitly imposingstraints on the parame-
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ters throughout training (Lasserre et al., 2006). This type of initializaginegularization strategy
has precedence in the neural networks literature, in the shape of thestegping idea (fjberg

and Ljung, 1995; Amari et al., 1997), and in the Hidden Markov ModeMI#) community (Bahl

et al., 1986; Povey and Woodland, 2002) where it was found thatriising an HMM as a genera-

tive model was essential (as an initialization step) before fine-tuning itiglisatively. We suggest
that, in the highly non-convex situation of training a deep architecture,idgfaparticular initial-
ization pointimplicitly imposes constraints on the parameters in that it specifies which minima (out
of a very large number of possible minima) of the cost function are allowedhi$ way, it may

be possible to think of unsupervised pre-training as being related to theaaghpof Lasserre et al.
(2006).

Another important and distinct property of the unsupervised pre-trainiiategy is that in the
standard situation of training using stochastic gradient descent, thediaingdineralization effects
due to pre-training do not appear to diminish as the number of labeled exagnples very large.
We argue that this is a consequence of the combination of the non-confrexity-modality) of the
objective function and the dependency of the stochastic gradientrdesethod on example order-
ing. We find that early changes in the parameters have a greater impae fimathregion (basin
of attraction of the descent procedure) in which the learner ends uparticular, unsupervised
pre-training sets the parameter in a region from which better basins oftmitraan be reached, in
terms of generalization. Hence, although unsupervised pre-trainingeigudarizer, it can have a
positive effect on the training objective when the number of training exasiplarge.

As previously stated, this paper is concerned with an experimental ass@ssf the various
competing hypotheses regarding the role of unsupervised pre-trainihg recent success of deep
learning methods. To this end, we present a series of experiments degifjriitese hypotheses
against one another in an attempt to resolve some of the mystery surrotineliatjectiveness of
unsupervised pre-training.

In the first set of experiments (in Section 6), we establish the effectxfpervised pre-training
on improving the generalization error of trained deep architectures. lsebigon we also exploit
dimensionality reduction techniques to illustrate how unsupervised pre-gaiffiects the location
of minima in parameter space.

In the second set of experiments (in Section 7), we directly compare theltsvoaive hy-
potheses (pre-training as a pre-conditioner; and pre-training astamizgtion scheme) against
the hypothesis that unsupervised pre-training is a regularization straietipe final set of experi-
ments, (in Section 8), we explore the role of unsupervised pre-training iortline learning setting,
where the number of available training examples grows very large. In thgmgiments, we test
key aspects of our hypothesis relating to the topology of the cost funatidthe role of unsuper-
vised pre-training in manipulating the region of parameter space from whjpdmgised training is
initiated.

Before delving into the experiments, we begin with a more in-depth view of thkkeciges in

training deep architectures and how we believe unsupervised pre-yaioitks towards overcom-
ing these challenges.
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2. The Challenges of Deep Learning

In this section, we present a perspective on why standard trainingepfrdedels through gradient
backpropagation appears to be so difficult. First, it is important to establiahwe mean in stating
that training is difficult.

We believe the central challenge in training deep architectures is dealing wistrémg depen-
dencies that exist during training between the parameters across |@meswvay to conceive the
difficulty of the problem is that we must simultaneously:

1. adapt the lower layers in order to provide adequate input to the findidfetraining) setting
of the upper layers

2. adapt the upper layers to make good use of the final (end of trainéttiy)gs of the lower
layers.

The second problem is easy on its own (i.e., when the final setting of thelaylees is known). Itis
not clear how difficult is the first one, and we conjecture that a particlifculty arises when both
sets of layers must be learned jointly, as the gradient of the objectivéidaris limited to a local
measure given the current setting of other parameters. Furthermoaeidgewith enough capacity
the top two layers can easily overfit the training set, training error doesaugssarily reveal the
difficulty in optimizing the lower layers. As shown in our experiments here, taedsard training
schemes tend to place the parameters in regions of the parameters spgeaehaize poorly.

A separate but related issue appears if we focus our considerati@uiidnal training methods
for deep architectures on stochastic gradient descent. A sequeexanoples along with an online
gradient descent procedure defines a trajectory in parameter ggdack,converges in some sense
(the error does not improve anymore, maybe because we are nedrrilticaum). The hypothesis
is that small perturbations of that trajectory (either by initialization or by ceamgwhich examples
are seen when) have more effect early on. Early in the process offofjdhe stochastic gradient,
changes in the weights tend to increase their magnitude and, consequentyndiint of non-
linearity of the network increases. As this happens, the set of regiaessgble by stochastic
gradient descent on samples of the training distribution becomes smallgroBam training small
perturbations allow the model parameters to switch from one basin to a neebyhereas later
on (typically with larger parameter values), it is unlikely to “escape” frochsai basin of attraction.
Hence the early examples can have a larger influence and, in practrthermodel parameters in
particular regions of parameter space that correspond to the specifarlsitrary ordering of the
training examples. An important consequence of this phenomenon is that even in the presfence
a very large (effectively infinite) amounts of supervised data, stochgigttient descent is subject
to a degree obverfittingto the training data presented early in the training process. In that sense,
unsupervised pre-training interacts intimately with the optimization processylae the number
of training examples becomes large, its positive effect is seen not onlgmeraization error but
also on training error.

1. This process seems similar to the “critical period” phenomena obdémneuroscience and psychology (Bornstein,
1987).
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3. Unsupervised Pre-training Acts as a Regularizer

As stated in the introduction, we believe that greedy layer-wise unsupdmis-training overcomes
the challenges of deep learning by introducing a useful prior tetipervised fine-tuningaining
procedure. We claim that the regularization effect is a consequerte gire-training procedure
establishing an initialization point of the fine-tuning procedure inside a reafiparameter space
in which the parameters are henceforth restricted. The parameterstaicted to a relatively small
volume of parameter space that is delineated by the boundary wfddlebasin of attractiorof the
supervised fine-tuning cost function.

The pre-training procedure increases the magnitude of the weights amaddas] deep models,
with a sigmoidal nonlinearity, this has the effect of rendering both the fumatiore nonlinear and
the cost function locally more complicated with more topological features ssigleaks, troughs
and plateaus. The existence of these topological features rendewsémegper space locally more
difficult to travel significant distances via a gradient descent praeediihis is the core of the
restrictive property imposed by the pre-training procedure and heeceatsis of its regularizing
properties.

But unsupervised pre-training restricts the parameters to particulameegibose that corre-
spond to capturing structure in the input distributi®{X). To simply state that unsupervised pre-
training is a regularization strategy somewhat undermines the significaitsesffectiveness. Not
all regularizers are created equal and, in comparison to standardanegtion schemes such as
L1 andL, parameter penalization, unsupervised pre-training is dramatically effedie believe
the credit for its success can be attributed to the unsupervised trainingacdfgimized during
unsupervised pre-training.

During each phase of the greedy unsupervised training strategys lagetrained to represent
the dominant factors of variation extant in the data. This has the effecverfdging knowledge
of X to form, at each layer, a representationXofconsisting of statistically reliable features of
X that can then be used to predict the output (usually a class lgbelhis perspective places
unsupervised pre-training well within the family of learning strategies collelgtiknow as semi-
supervised methods. As with other recent work demonstrating the eéfieetig of semi-supervised
methods in regularizing model parameters, we claim that the effectivehéssunsupervised pre-
training strategy is limited to the extent that learnia@X) is helpful in learningP(Y|X). Here,
we find transformations of—Ilearned features—that are predictive of the main factors of variation
in P(X), and when the pre-training strategy is effecfveome of these learned featuresXofire
also predictive ofY. In the context of deep learning, the greedy unsupervised strategylsay
have a special function. To some degree it resolves the problem of siealtsiy learning the
parameters at all layers (mentioned in Section 2) by introducing a proxyiente This proxy
criterion encourages significant factors of variation, present in the idata, to be represented in
intermediate layers.

To clarify this line of reasoning, we can formalize the effect of unsupedspre-training in
inducing a prior distribution over the parameters. Let us assume that pgararaee forced to be
chosen in a bounded regighc RY. Let S be split in regions{Ry} that are the basins of attrac-
tion of descent procedures in the training error (note {Ra} depends on the training set, but the
dependency decreases as the number of examples increases). eNgRaw S andR NR; =0
fori+# j. Let vk = [ 1gcr 06 be the volume associated with regiBa (where® are our model's

2. Acting as a form of (data-dependent) “prior” on the parametensgaare about to formalize.
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parameters). Lat, be the probability that a purely random initialization (according to our initial-
ization procedure, which factorizes across parameters) lariRls and letry be the probability that
pre-training (following a random initialization) lands Ry, that is, 5 r« = 3¢ Tk = 1. We can now
take into account the initialization procedure as a regularization term:

regularizer= —logP(0).
For pre-trained models, the prior is

PprLLtraining(e) = ZleeRkT[k/Vk

For the models without unsupervised pre-training, the prior is

Pro—pre—training(8) = Zleeerk/Vk-

One can verify thaPyre_training(8 € Rk) = Tk andPno—pre-training(8 € R¢) = rk. Whenry is tiny, the
penalty is high whe® € Ry, with unsupervised pre-training. The derivative of this regularizer is
zero almost everywhere because we have chosen a uniform price eesath regioirc. Hence, to
take the regularizer into account, and having a generative nigelaining(8) for 0 (i.e., this is
the unsupervised pre-training procedure), it is reasonable to sampiiah® from it (knowing
that from this point on the penalty will not increase during the iterative minimigatfdhe training
criterion), and this is exactly how the pre-trained models are obtained irkpariments.

Note that this formalization is just an illustration: it is there to simply show how omtdco
conceptually think of an initialization point as a regularizer and should naaken as a literal
interpretation of how regularization is explicitly achieved, since we do nat ha analytic formula
for computing ther's andvy's. Instead these are implicitly defined by the whole unsupervised
pre-training procedure.

4. Previous Relevant Work

We start with an overview of the literature on semi-supervised learning)(SBice the SSL frame-
work is essentially the one in which we operate as well.

4.1 Related Semi-Supervised Methods

It has been recognized for some time that generative models are lesstproverfitting than dis-
criminant ones (Ng and Jordan, 2002). Consider input varidlded target variabl¥. Whereas a
discriminant model focuses d(Y|X), a generative model focuses B(X,Y) (often parametrized
asP(X]Y)P(Y)), that is, it also cares about gettiR§X) right, which can reduce the freedom of
fitting the data when the ultimate goal is only to prediaivenX.

Exploiting information abouP(X) to improve generalization of a classifier has been the driving
idea behind semi-supervised learning (Chapelle et al., 2006). For examplean use unsupervised
learning to mapX into a representation (also called embedding) such that two exammpéesi X,
that belong to the same cluster (or are reachable through a short pagityoiagh neighboring ex-
amples in the training set) end up having nearby embeddings. One can #hsupesvised learning
(e.g., a linear classifier) in that new space and achieve better generalimati@any cases (Belkin
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and Niyogi, 2002; Chapelle et al., 2003). A long-standing variant of thg@ach is the applica-
tion of Principal Components Analysis as a pre-processing step bgfph@rag a classifier (on the
projected data). In these models the data is first transformed in a nevgeatagon using unsu-
pervised learning, and a supervised classifier is stacked on top, ig#onimap the data in this new
representation into class predictions.

Instead of having separate unsupervised and supervised compioriietsnodel, one can con-
sider models in whictiP(X) (or P(X,Y)) andP(Y|X) share parameters (or whose parameters are
connected in some way), and one can trade-off the supervised critetagP(Y|X) with the un-
supervised or generative one lpgP(X) or —logP(X,Y)). It can then be seen that the generative
criterion corresponds to a particular form of prior (Lasserre et ab6pthamely that the structure of
P(X) is connected to the structure®fY|X) in a way that is captured by the shared parametrization.
By controlling how much of the generative criterion is included in the total eoibelone can find a
better trade-off than with a purely generative or a purely discriminativeitiga criterion (Lasserre
et al., 2006; Larochelle and Bengio, 2008).

In the context of deep architectures, a very interesting application af ttieas involves adding
an unsupervised embedding criterion at each layer (or only one intertméaljar) to a traditional
supervised criterion (Weston et al., 2008). This has been shown to bwexfpl semi-supervised
learning strategy, and is an alternative to the kind of algorithms descritse@\etuated in this
paper, which also combine unsupervised learning with supervised lgarnin

In the context of scarcity of labelled data (and abundance of unlabedtagl, dieep architectures
have shown promise as well. Salakhutdinov and Hinton (2008) describ¢hadnfer learning the
covariance matrix of a Gaussian Process, in which the usage of unlabe#ietbles for modeling
P(X) improvesP(Y|X) quite significantly. Note that such a result is to be expected: with few la-
belled samples, modelir(X) usually helps. Our results show that even in the conteabahdant
labelled data unsupervised pre-training still has a pronounced positive effegeoeralization: a
somewhat surprising conclusion.

4.2 Early Stopping as a Form of Regularization

We stated that pre-training as initialization can be seen as restricting the optimigedwedure to

a relatively small volume of parameter space that corresponds to a |lassaldfaattraction of the
supervised cost function. Early stopping can be seen as having a siffélgr by constraining the
optimization procedure to a region of the parameter space that is close to thecinifiguration

of parameters. With the number of training iterations amdthe learning rate used in the update
procedurern can be seen as the reciprocal of a regularization parameter. Indsgtsting either
guantity restricts the area of parameter space reachable from the staitihglp the case of the
optimization of a simple linear model (initialized at the origin) using a quadratic &rmation and
simple gradient descent, early stopping will have a similar effect to traditregalarization.

Thus, in both pre-training and early stopping, the parameters of thevssgbicost function
are constrained to be close to their initial valdes. more formal treatment of early stopping as
regularization is given by 8perg and Ljung (1995) and Amatri et al. (1997). There is no equivale
treatment of pre-training, but this paper sheds some light on the effestebfinitialization in the
case of deep architectures.

3. In the case of pre-training the “initial values” of the parameters fostipervised phase are those that were obtained
at the end of pre-training.
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5. Experimental Setup and Methodology

In this section, we describe the setting in which we test the hypothesis indddu&ection 3 and
previously proposed hypotheses. The section includes a descriptibe déep architectures used,
the data sets and the details necessary to reproduce our results.

5.1 Models

All of the successful methods (Hinton et al., 2006; Hinton and Salakhutdi2@06; Bengio et al.,
2007; Ranzato et al., 2007; Vincent et al., 2008; Weston et al., 2008 dRa et al., 2008; Lee
et al., 2008) in the literature for training deep architectures have somethaagrimon: they rely
on an unsupervised learning algorithm that provides a training signat d¢\hl of a single layer.
Most work in two main phases. In a first phasasupervised pre-trainingll layers are initialized
using this layer-wise unsupervised learning signal. In a second ghasé,ning a global training
criterion (a prediction error, using labels in the case of a supervisedl imghinimized. In the
algorithms initially proposed (Hinton et al., 2006; Bengio et al., 2007; Rarzia&b., 2007), the
unsupervised pre-training is done in a greedy layer-wise fashiotagels thek-th layer is trained
(with respect to an unsupervised criterion) using as input the outpué girvious layer, and while
the previous layers are kept fixed.

We shall consider two deep architectures as representatives of two faofileodels encoun-
tered in the deep learning literature.

5.1.1 DeEEPBELIEF NETWORKS

The first model is the Deep Belief Net (DBN) by Hinton et al. (2006), olgdiby training and
stacking several layers of Restricted Boltzmann Machines (RBM) in algmnemnner. Once this
stack of RBMs is trained, it can be used to initialize a multi-layer neural netfoorassification.

An RBM with n hidden units is a Markov Random Field (MRF) for the joint distribution be-
tween hidden variablds and observed variableg such thatP(h|x) andP(x|h) factorize, that is,
P(h[x) = [1i P(hi|x) andP(x|h) = 7; P(x;|h). The sufficient statistics of the MRF are typicaliy
Xj andhix;, which gives rise to the following joint distribution:

P(X h) 0 eh’WX+b’X+C/h

with corresponding parametes= (W, b, c) (with ' denoting transpose; associated withh;, b
with x;, andW; with hix;). If we restricth; andx; to be binary units, it is straightforward to show
that

P(x|h)

|_| P(xjlh) with
i
P(xj =1/h) = sigmoidbj+ % Wjhi).

where sigmoida) = 1/(1+exp(—a)) (applied element-wise on a vect&);, andP(h|x) also has
a similar form:

P(hjx) = HP(hi]x) with

P(h| — 1|X) = SingiC(Ci + ZVVI] XJ)
J
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The RBM form can be generalized to other conditional distributions beliddsinomial, including
continuous variables. Welling et al. (2005) describe a generalizatioBbf Rodels to conditional
distributions from the exponential family.

RBM models can be trained by approximate stochastic gradient descent. ugtitRox) is
not tractable in an RBM, the Contrastive Divergence estimator (Hintor)28G@& good stochastic
approximation of"%g(x), in that it very often has the same sign (Bengio and Delalleau, 2009).

A DBN is a multi-layer generative model with layer variables(the input or visible layer),
hi, hy, etc. The top two layers have a joint distribution which is an RBM, Bxlok|hy.1) are
parametrized in the same way as for an RBM. Hence a 2-layer DBN is an R stack of RBMs
share parametrization with a corresponding DBN. The contrastivegdimee update direction can
be used to initialize each layer of a DBN as an RBM, as follows. Considenrgtéafyer of the DBN
trained as an RBMP; with hidden layeth; and visible layewn;. We can train a second RB%
that models (in its visible layer) the samplasfrom Py (h;|v1) whenv; is sampled from the training
data set. It can be shown that this maximizes a lower bound on the log-likeldfabd DBN. The
number of layers can be increased greedily, with the newly added topttaysed as an RBM to
model the samples produced by chaining the postefithighy_1) of the lower layers (starting from
hp from the training data set).

The parameters of a DBN or of a stack of RBMs also correspond to tleamgders of a de-
terministic feed-forward multi-layer neural network. Theh unit of thek-th layer of the neural
network outputsﬁki = sigmoid ¢y + ¥ Wi ﬁk_]_’j), using the parametecg andwW of thek-th layer
of the DBN. Hence, once the stack of RBMs or the DBN is trained, one saithose parameters to
initialize the first layers of a corresponding multi-layer neural networke @mmore additional lay-
ers can be added to map the top-level featbyds the predictions associated with a target variable
(here the probabilities associated with each class in a classification tasigioB2009) provides
more details on RBMs and DBNs, and a survey of related models and ddefeaiures.

5.1.2 SACKED DENOISING AUTO-ENCODERS

The second model, by Vincent et al. (2008), is the so-called Stackedighegm Auto-Encoder
(SDAE). It borrows the greedy principle from DBNSs, but uses dengiauto-encoders as a building
block for unsupervised modeling. An auto-encoder learns an enb¢demnd a decodeg(-) whose
composition approaches the identity for examples in the training set, tigéh{g)) ~ x for x in the
training set.

Assuming that some constraint prevegih(-)) from being the identity for arbitrary arguments,
the auto-encoder has to capture statistical structure in the training seteintorchinimize recon-
struction error. However, with a high capacity codgx( has too many dimensions), a regular
auto-encoder could potentially learn a trivial encoding. Note that there istemate connection
between minimizing reconstruction error for auto-encoders and com&abtiergence training for
RBMs, as both can be shown to approximate a log-likelihood gradient {Band Delalleau, 2009).

The denoising auto-encoddiincent et al., 2008; Seung, 1998; LeCun, 1987; Gallinari et al.,
1987) is a stochastic variant of the ordinary auto-encoder with the distrqotbperty that even with
a high capacity model, it cannot learn the identity mapping. A denoising awidents explicitly
trained to denoise a corrupted version of its input. Its training criterion ke viewed as a
variational lower bound on the likelihood of a specific generative modéladtbeen shown on an
array of data sets to perform significantly better than ordinary autodems@nd similarly or better
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than RBMs when stacked into a deep supervised architecture (Vincant2208). Another way to
prevent regular auto-encoders with more code units than inputs to leadetitiy is to restrict the
capacity of the representation by imposing sparsity on the code (Ranzdto2€07, 2008).

We now summarize the training algorithm of the Stacked Denoising Auto-Ercobliore de-
tails are given by Vincent et al. (2008). Each denoising auto-encuirates on its inputs either
the raw inputs or the outputs of the previous layer. The denoising autments trained to recon-
structx from a stochastically corrupted (noisy) transformation of it. The outp@ach denoising
auto-encoder is the “code vectdi(x), not to confuse with the reconstruction obtained by applying
the decoder to that code vector. In our experiméxs = sigmoidb +Wx) is an ordinary neural
network layer, with hidden unit biasés and weight matrixV. LetC(x) represent a stochastic cor-
ruption ofx. As done by Vincent et al. (2008), we §&tx) = x; or 0, with a random subset (of a fixed
size) selected for zeroing. We have also considered a salt and pepperwhere we select a ran-
dom subset of a fixed size and €gfx) = Bernoulli(0.5). The denoised “reconstruction” is obtained
from the noisy input withk = sigmoid c+WTh(C(x))), using biases and the transpose of the feed-
forward weightsW. In the experiments on images, both the raw inguwnd its reconstructior; ~
for a particular pixel can be interpreted as a Bernoulli probability for that pixel: the probability
of painting the pixel as black at that location. We denotéXJi) = 5; CE(x;||X) the sum of the
component-wise cross-entropy between the Bernoulli probability distrittiesociated with each
element o and its reconstruction probabiliti&s CE(x||X) = — 5 (xlogX + (1 —x)log(1—X)).

The Bernoulli model only makes sense when the input components anddbeirstruction are in
[0,1]; another option is to use a Gaussian model, which corresponds to a Meare8&rror (MSE)
criterion.

With either DBN or SDAE, an output logistic regression layer is added afisupervised
training. This layer uses softmax (multinomial logistic regression) units to estiR{atassx) =
softmaxiasd @), whereg; is a linear combination of outputs from the top hidden layer. The whole
network is then trained as usual for multi-layer perceptrons, to minimize theitoftegative log-
likelihood) prediction error.

5.2 Data Sets

We experimented on three data sets, with the motivation that our experimertsheguunderstand
previously presented results with deep architectures, which were mostlyheitdNIST data set
and variations (Hinton et al., 2006; Bengio et al., 2007; Ranzato et alZ; 2@@ochelle et al., 2007;
Vincent et al., 2008):

MNI ST the digit classification data set by LeCun et al. (1998), containing 60,@0@irtg and
10,000 testing examples of 28x28 handwritten digits in gray-scale.

I nfiniteMNI ST a data set by Loosli et al. (2007), which is an extensioNMBIST from which
one can obtain a quasi-infinite number of examples. The samples are oliigiperdorming
random elastic deformations of the origiZIST digits. In this data set, there is only one set
of examples, and the models will be compared by their (online) performanite o

Shapeset is a synthetic data set with a controlled range of geometric invariances.ntleelying
task is binary classification of 2010 images of triangles and squares. The examples show
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images of shapes with many variations, such as size, orientation and geay¥lee data set
is composed of 50000 training, 10000 validation and 10000 test infages.

5.3 Setup
The models used are

1. Deep Belief Networks containing Bernoulli RBM layers,
2. Stacked Denoising Auto-Encoders with Bernoulli input units, and

3. standard feed-forward multi-layer neural networks,

each with 1-5 hidden layers. Each hidden layer contains the same nuntiidden units, which

is a hyperparameter. The other hyperparameters are the unsupamnissapervised learning rates,
the L, penalty / weight deca¥,and the fraction of stochastically corrupted inputs (for the SDAE).
For MNIST, the number of supervised and unsupervised passes through themathy) is 50 and

50 per layer, respectively. WitmfiniteMNIST , we perform 2.5 million unsupervised updates
followed by 7.5 million supervised updatédhe standard feed-forward networks are trained using
10 million supervised updates. RdNIST, model selection is done by choosing the hyperparameters
that optimize the supervised (classification) error on the validation semnffrdteMNIST  , we use

the average online error over the last million examples for hyperparanséetion. In all cases,
purely stochastic gradient updates are applied.

The experiments involve the training of deep architectures with a variable erunfibayers
with and without unsupervised pre-training. For a given layer, weiglatingtialized using random
samples from uniforf-1/vk, 1/vk], wherek is the number of connections that a unit receives
from the previous layer (the fan-in). Either supervised gradientagie s unsupervised pre-training
follows.

In most cases (favINIST), we first launched a number of experiments using a cross-product of
hyperparameter valuésipplied to 10 different random initialization seeds. We then selected the
hyperparameter sets giving the best validation error for each combirdtnadel (with or without
pre-training), number of layers, and number of training iterations. Usiegetiyper-parameters,
we launched experiments using an additional 400 initialization seedsinflrgeMNIST , only
one seed is considered (an arbitrarily chosen value).

In the discussions below we sometimes use the vempoarent local minimum to mean the
solution obtained after training, when no further noticeable progressssaehievable by stochastic
gradient descent. It is possible that these are not really near a trdeliméi@um (there could be a
tiny ravine towards significant improvement, not accessible by gradiectd®), but it is clear that
these end-points represent regions where gradient descent isNtiekalso that when we write of
number of layers it is to be understood as the numbéidifenlayers in the network.

4. The data set can be downloaded frbip://www.iro.umontreal.ca/ ~ lisa/twiki/bin/view.cgi/Public/
ShapesetDataForJMLR .

5. A penalizing term\HGH% is added to the supervised objective, whérare the weights of the network, aids a
hyper-parameter modulating the strength of the penalty.

6. The number of examples was chosen to be as large as possible, tillalkosiing for the exploration a variety of
hyper-parameters.

7. Number of hidden units {400,800 1200}; learning ratec {0.1,0.05,0.02,0.01,0.005}; ¢» penalty coefficient
A € {1074,1075,107%,0}; pre-training learning rate: {0.01,0.0050.002 0.001,0.0005}; corruption probability
€ {0.0,0.1,0.25,0.4}; tied weightse {yes no}.
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6. The Effect of Unsupervised Pre-training

We start by a presentation of large-scale simulations that were intendedfimmcgome of the
previously published results about deep architectures. In the protesmlyzing them, we start
making connections to our hypotheses and motivate the experiments that follow

6.1 Better Generalization

When choosing the number of units per layer, the learning rate and the nofiiaening iterations
to optimize classification error on the validation set, unsupervised pre-magies substantially
lower test classification error than no pre-training, for the same deptin snfaller depth on various
vision data sets (Ranzato et al., 2007; Bengio et al., 2007; Larochelle 20@9, 2007; Vincent
et al., 2008) no larger than thdNIST digit data set (experiments reported from 10,000 to 50,000
training examples).

Such work was performed with only one or a handful of different cemdnitialization seeds,
so one of the goals of this study was to ascertain the effect of the ranekdnused when initial-
izing ordinary neural networks (deep or shallow) and the pre-trainioggulure. For this purpose,
between 50 and 400 different seeds were used to obtain the graphithi &h
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Figure 1: Effect of depth on performance for a model trainkedt)( without unsupervised pre-
training and (ight) with unsupervised pre-training, for 1 to 5 hidden layers (networks
with 5 layers failed to converge to a solution, without the use of unsupenpse-
training). Experiments oMNIST. Box plots show the distribution of errors associated
with 400 different initialization seeds (top and bottom quartiles in box, plus osittie-
yond top and bottom quartiles). Other hyperparameters are optimized awdyg val-
idation set).Increasing depth seems to increase the probability of finding poor appar
local minima.

Figure 1 shows the resulting distribution of test classification error, olutairtd and without
pre-training, as we increase the depth of the network. Figure 2 shoas dhigtributions as his-
tograms in the case of 1 and 4 layers. As can be seen in Figure 1, wisegdgsre-training allows
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classification error to go down steadily as we move from 1 to 4 hidden laydrsreas without
pre-training the error goes up after 2 hidden layers. It should alsoteel that we were unable to
effectively train 5-layer models without use of unsupervised pre-trginiot only is the error ob-
tained on average with unsupervised pre-training systematically lower tklamuthe pre-training,
it appears also more robust to the random initialization. With unsupervigetigining the variance
stays at about the same level up to 4 hidden layers, with the number of tedsogrowing slowly.

Contrast this with the case without pre-training: the variance and numlisadodutliers grows
sharply as we increase the nhumber of layers beyond 2. The gain obtithednsupervised pre-
training is more pronounced as we increase the number of layers, as iaithi gobustness to
random initialization. This can be seen in Figure 2. The increase in erranea and mean for
deeper architectures without pre-training suggestsiicatasing depth increases the probability
of finding poor apparent local minima when starting from random initialization. It is also interest-
ing to note the low variance and small spread of errors obtained with 408 ggth unsupervised
pre-training: it suggests thainsupervised pre-training is robust with respect to the random
initialization seed (the one used to initialize parameters before pre-training).

N <—< 1 layer without pretraining
(<) 1 layer with pretraining

[

= 4 layers without pretraining
(20 4 layers with pretraining

count
count

o oD g i

L ; gk il T o1
12 T K < 21 1 i3 4 16 18 2 2z 4 26 28 3
test error test error

Figure 2: Histograms presenting the test errors obtaineMMIST using models trained with or
without pre-training (400 different initializations each)eft: 1 hidden layer.Right: 4
hidden layers.

These experiments show that the variance of final test error with nesgiedialization random
seed is larger without pre-training, and this effect is magnified for deshitectures. It should
however be noted that there is a limit to the success of this technique: parfoe degrades for 5
layers on this problem.

6.2 Visualization of Features

Figure 3 shows the weights (called filters) of the first layer of the DBNleedmd after supervised
fine-tuning. For visualizing what units do on the 2nd and 3rd layer, wd tise activation maxi-
mization technigue described by Erhan et al. (2009): to visualize whait eesponds most to, the
method looks for the bounded input pattern that maximizes the activation eéa gnit. This is an
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optimization problem which is solved by performing gradient ascent in theespithe inputs, to
find a local maximum of the activation function. Interestingly, nearly the sameémma activation
input pattern is recovered from most random initializations of the input patter

/

3l
#

e

Figure 3: Visualization of filters learned by a DBN trained lofiniteMNIST . The top figures
contain a visualization of filters after pre-training, while the bottoms ones pithe

same units after supervised fine-tuning; from left to right: units from tlhe2bsl and 3rd
layers, respectively.

For comparison, we have also visualized the filters of a network for 1-e3day which no pre-
training was performed (Figure 4). While the first layer filters do seem teespond to localized
features, 2nd and 3rd layers are not as interpretable anymore. Qualjtajpeaking, filters from
the bottom row of Figure 3 and those from Figure 4 have little in common, which iistaresting
conclusion in itself. In addition, there seems to be more interesting visualgadn the features
learned in networks with unsupervised pre-training.

Several interesting conclusions can be drawn from Figure 3. Firsgpgspd fine-tuning (after
unsupervised pre-training), even with 7.5 million updates, does not etthegveights in a signif-
icant way (at least visually): they seem stuck in a certain region of weigdte, and the sign of
weights does not change after fine-tuning (hence the same pattern igisealy). Second, dif-
ferent layers change differently: the first layer changes least, whgersised training has more
effect when performed on the 3rd layer. Such observations aréstemswith the predictions made
by our hypothesis: namely that the early dynamics of stochastic gradiecgmte the dynamics in-
duced by unsupervised pre-training, can “lock” the training in a regfidheparameter space that
is essentially inaccessible for models that are trained in a purely supewased

Finally, the features increase in complexity as we add more layers. Firstviaights seem
to encode basic stroke-like detectors, second layer weights seem tt digteparts, while top
layer weights detect entire digits. The features are more complicated asdweaad layers, and
displaying only one image for each “feature” does not do justice to thelinear nature of that
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feature. For example, it does not show #e of pattern®n which the feature is highly active (or
highly inactive).

While Figures 3—4 show only the filters obtained lofiniteMNIST ~ , the visualizations are
similar when applied oMNIST. Likewise, the features obtained with SDAE result in qualitatively
similar conclusions; Erhan et al. (2009) gives more details.

Figure 4: Visualization of filters learned by a network without pre-trainirtggined on
InfiniteMNIST . The filters are shown after supervised training; from left to right: units
from the 1st, 2nd and 3rd layers, respectively.

6.3 Visualization of Model Trajectories During Learning

Visualizing the learned features allows for a qualitative comparison of ti@ngastrategies for
deep architectures. However it is not useful for investigating how teeagegies are influenced
by random initialization, as the features learned from multiple initializations look simifait
was possible for us to visualize a variety of models at the same time, it would adldavexplore
our hypothesis, and ascertain to what degree and how the set oajredtmodels (for different
random seeds) is far from the set of models without pre-training. Daetives sets cover very
different regions in parameter space? Are parameter trajectories gdttoigis many different
apparent local minima?

Unfortunately, it is not possible to directly compare parameter values of te¥otectures, be-
cause many permutations of the same parameters give rise to the same modeletiowe can
take a functional approximation approach in which we compare the fundtmm {nput to output)
represented by each network, rather than comparing the parametergunition is the infinite
ordered set of output values associated with all possible inputs, and bhecapproximated with
a finite number of inputs (preferably plausible ones). To visualize the tagjes followed during
training, we use the following procedure. For a given model, we compute@mchtenate all its
outputs on the test set examples as one long vector summarizing wherestistédction space”.
We get one such vector for each partially trained model (at each trainnagiate). This allows us
to plot many learning trajectories, one for each initialization seed, with or wifhr@utraining. Us-
ing a dimensionality reduction algorithm we then map these vectors to a two-dimehsjmace for
visualization® Figures 5 and 6 present the results using dimensionality reduction techriftate

8. Note that we can and do project the models with and without pre-traihthg aame time, so as to visualize them in
the same space.
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focus respectively on locabnd global structur&? Each point is colored according to the training
iteration, to help follow the trajectory movement.

100
2 layers with pre—training
80
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-60 g%
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-801 . &
)
2 layers without pre-training
-100 Il Il Il Il Il Il Il Il L I}
-100 -80 -60 -40 -20 0 20 40 60 80 100

Figure 5: 2D visualizations with tSNE of the functions represented by 50ankswith and 50 net-
works without pre-training, as supervised training proceeds over9WiNbee Section 6.3
for an explanation. Color from dark blue to cyan and red indicates agssipn in train-
ing iterations (training is longer without pre-training). The plot shows mougtis 2
hidden layers but results are similar with other depths.

What seems to come out of these visualizations is the following:

1. The pre-trained and not pre-trained models start &taglin different regions of function
space.

2. From the visualization focusing on local structure (Figure 5) we sdeathtrajectories of
a given type (with pre-training or without) initially move together. Howeversane point
(after about 7 epochs) the different trajectories (correspondingffereht random seeds)
diverge (slowing down into elongated jets) and never get back closectoaher (this is
more true for trajectories of networks without pre-training). This suiggeat each trajectory
moves into a different apparent local minimdn.

9. t-Distributed Stochastic Neighbor Embedding, or tSNE, by van der Maatd Hinton (2008), with the default pa-
rameters available in the public implementatibtip://ict.ewi.tudelft.nl/ ~ lvandermaaten/t-SNE.html
10. Isomap by Tenenbaum et al. (2000), with one connected compone
11. One may wonder if the divergence points correspond to a turniimg ipaerms of overfitting. As shall be seen in
Figure 8, the test error does not improve much after the 7th epochhwéiitforces this hypothesis.
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Figure 6: 2D visualization with ISOMAP of the functions represented by &fvorks with and
50 networks without pre-training, as supervised training proceeddMMEST. See Sec-
tion 6.3 for an explanation. Color from dark blue to cyan indicates a pssgre in
training iterations (training is longer without pre-training). The plot showsl@swith
2 hidden layers but results are similar with other depths.

3. From the visualization focusing on global structure (Figure 6), wetsepre-trained models
live in a disjoint and much smaller region of space than the not pre-traineélsmada fact,
from the standpoint of the functions found without pre-training, thetmimed solutions
look all the same, and their self-similarity increases (variance across deegkases) during
training, while the opposite is observed without pre-training. This is comsistéh the
formalization of pre-training from Section 3, in which we described a theaigustification
for viewing unsupervised pre-training as a regularizer; there, thegpilities of pre-traininig
parameters landing in a basin of attraction is small.

The visualizations of the training trajectories do seem to confirm our suspiclbis difficult
to guarantee that each trajectory actually does end up in a differennhicimhum (corresponding
to a different function and not only to different parameters). Howeadtests performed (visual
inspection of trajectories in function space, but also estimation of secondtilees in the directions
of all the estimated eigenvectors of the Jacobian not reported in detai)swene consistent with
that interpretation.

We have also analyzed models obtained at the end of training, to visualizaithiagrcriterion
in the neighborhood of the parameter vedibrobtained. This is achieved by randomly sampling
a directionv (from the stochastic gradient directions) and by plotting the training critemioand
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6* in that direction, that is, & =6*+av, fora € {-2.5,-24,...,-0.1,0,0.1,...2.4,2.5}, and

v normalized [|v|| = 1). This analysis is visualized in Figure 7. The error curves look close to
guadratic and we seem to be near a local minimum in all directions investigategpased to a
saddle point or a plateau. A more definite answer could be given by corgghenfull Hessian
eigenspectrum, which would be expensive. Figure 7 also suggestsehatdn landscape is a bit
flatter in the case of unsupervised pre-training, and flatter for deeggtexctures.

-30 20 -10 0 10 20 30 -30 20 -10 0 10 20 30 -30 20 -10 0 10 20 30

Figure 7: Training errors obtained @&hmapeset when stepping in parameter space around a con-
verged model in 7 random gradient directions (stepsize.bf. OTop: no pre-training.
Bottom: with unsupervised pre-trainind-eft: 1 hidden layer.Middle: 2 hidden lay-
ers. Right: 3 hidden layers. Compare also with Figure 8, where 1-layer networks with
unsupervised pre-training obtain higher training errors.

6.4 Implications

The series of results presented so far show a picture that is consistermun hypothesis. Better
generalization that seems to be robust to random initializations is indeed edttigypre-trained
models, which indicates that unsupervised learning©f) is helpful in learningP(Y|X). The
function space landscapes that we visualized point to the fact that treereaay apparent local
minima. The pre-trained models seem to end up in distinct regions of thesdagmiscapes (and,
implicitly, in different parts of the parameter space). This is both seen franruhction space
trajectories and from the fact that the visualizations of the learned fsatineequalitatively very
different from those obtained by models without pre-training.

7. The Role of Unsupervised Pre-training

The observations so far in this paper confirm that starting the supervjgedization from pre-
trained weights rather than from randomly initialized weights consistently yigtierperforming
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classifiers otMNIST. To better understand where this advantage came from, it is important terealiz
that thesupervised objective being optimized is exactly the same in both dasegradient-based
optimization procedure is also the same. The only thing that differs is the stpdinign parameter
space: either picked at random or obtained after unsupervisedgmaiy (which also starts from a
random initialization).

Deep architectures, since they are built from the composition of sevgeaslaf non-linearities,
yield an error surface that is non-convex and hard to optimize, with theested presence of many
local minima (as also shown by the above visualizations). A gradient-badedization should
thus end in the apparent local minimum of whatebasin of attractionwe started from. From
this perspective, the advantage of unsupervised pre-training coudlthb# puts us in a region of
parameter space where basins of attraction run deeper than when pstkitigg parameters at
random. The advantage would be due to a befimization.

Now it might also be the case that unsupervised pre-training puts us inca re@gparameter
space in which training error is not necessarily better than when startirapabm (or possibly
worse), but which systematically yields better generalization (test eisogh behavior would be
indicative of aregularization effect. Note that the two forms of explanation an@t necessarily
mutually exclusive

Finally, a very simple explanation could be the most obvious one: namely tharitsim the
magnitude of the weights (or more generally, the marginal distribution of them®igt the start of
the supervised training phase. We shall analyze (and rule out) this egiefirst.

7.1 Experiment 1: Does Pre-training Provide a Better Conditioning Pocess for Supervised
Learning?

Typically gradient descent training of the deep model is initialized with randasgigned weights,
small enough to be in the linear region of the parameter space (close t@ezarodt neural network
and DBN models). Itis reasonable to ask if the advantage imparted by favindial unsupervised
pre-training phase is simply due to the weights being larger and therefordhg@anpeoviding a
better “conditioning” of the initial values for the optimization process; we wamberule out this
possibility.

By conditioning, we mean the range and marginal distribution from which \aev dnitial
weights. In other words, could we get the same performance advargagsapervised pre-training
if we were still drawing the initial weights independently, but from a more slétdistribution than
the uniform—1/vk, 1/v/k|? To verify this, we performed unsupervised pre-training, and computed
marginal histograms for each layer’s pre-trained weights and biased{stogram per each layer’s
weights and biases). We then resampled new “initial” random weights arestaasording to these
histograms (independently for each parameter), and performed fimefuom there. The resulting
parameters have the same marginal statistics as those obtained after vissdgme-training, but
not the same joint distribution.

Two scenarios can be imagined. In the first, the initialization from marginalddwead to
significantly better performance than the standard initialization (when ndrgiréng is used).
This would mean that unsupervised pre-training does provide a betteinaacgnditioning of
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the weights. In the second scenario, the marginals would lead to perfagrsamitar to or worse
than that without pre-training?

initialization. Uniform | Histogram| Unsup.pre-tr.
1 layer 1.814+0.07 | 1.944+0.09 | 1.414+0.07
2 layers 177+0.10 | 1.69+0.11 | 1.37+0.09

Table 1: Effect of various initialization strategies on 1 and 2-layer ardhites: independent uni-
form densities (one per parameter), independent densities from thénalargfter un-
supervised pre-training, or unsupervised pre-training (which sartipdesarameters in a
highly dependent way so that they collaborate to make up good denoigimgacoders.)
Experiments orMNIST, numbers are mean and standard deviation of test errors (across
different initialization seeds).

What we observe in Table 1 seems to fall within the first scenario. Howedle initializing
the weights to match the marginal distributions at the end of pre-training agjeeslightly improve
the generalization error on MNIST for 2 hidden layers, the differeno@isignificant and it is far
from fully accounting for the discrepancy between the pre-trained anepne-trained results.

This experiment constitutes evidence against the preconditioning hyjsythesdoes not ex-
clude either the optimization hypothesis or the regularization hypothesis.

7.2 Experiment 2: The Effect of Pre-training on Training Error

The optimization and regularization hypotheses diverge on their prediatidrow unsupervised
pre-training should affect the training error: the former predicts thaupervised pre-training
should result in a lower training error, while the latter predicts the oppositesgertain the influ-
ence of these two possible explanatory factors, we looked at the teé¢Neastive Log Likelihood
on test data) obtained as a function of the training cost, along the trajecttmyédd in parameter
space by the optimization procedure. Figure 8 shows 400 of these taresd from a point in
parameter space obtained from random initialization, that is, without prerga(blue), and 400
started from pre-trained parameters (red).

The experiments were performed for networks with 1, 2 and 3 hiddenslayesr can be seen
in Figure 8, while for 1 hidden layer, unsupervised pre-training reatdveer training cost than no
pre-training, hinting towards a better optimization, this is not necessarily e foa the deeper
networks. The remarkable observation is rather thaias same training cost level, the pre-trained
models systematically yield a lower test ctsin the randomly initialized ones. The advantage
appears to be one better generalization rather than merely a better optimization procedure

This brings us to the following result: unsupervised pre-training appedrave a similar effect
to that of a good regularizer or a good “prior” on the parameters, evargthno explicit regular-
ization term is apparent in the cost being optimized. As we stated in the hyothiaaight be
reasoned that restricting the possible starting points in parameter spacsddhlhbminimize the
unsupervised pre-training criterion (as with the SDAE), does in effestrict the set of possible

12. We observed that the distribution of weights after unsupervisettgiréng is fat-tailed. It is conceivable that sam-
pling from such a distribution in order to initialize a deep architecture might#igthurt the performance of a deep
architecture (compared to random initialization from a uniform distribution).
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Figure 8: Evolution without pre-training (blue) and with pre-training (redMNIST of the log of
the test NLL plotted against the log of the train NLL as training proceedsh Bathe
2 x 400 curves represents a different initialization. The errors are nmehsifter each
pass over the data. The rightmost points were measured after the fgssbfpgmdient
updates. Since training error tends to decrease during training, thedrageaun from
right (high training error) to left (low training error). Trajectories movimg (as we go
leftward) indicate a form of overfitting. All trajectories are plotted on topasfteother.

final configurations for parameter values. Like regularizers in géneraupervised pre-training (in
this case, with denoising auto-encoders) might thus be seen as degtbasiariance and introduc-
ing a bias (towards parameter configurations suitable for performingsiegp Unlike ordinary
regularizers, unsupervised pre-training does so in a data-defgendener.

7.3 Experiment 3: The Influence of the Layer Size

Another signature characteristic of regularization is that the effectsgemigregularization increases
as capacity (e.g., the number of hidden units) increases, effectivelgdrafi one constraint on the
model complexity for another. In this experiment we explore the relationgtpden the number of
units per layer and the effectiveness of unsupervised pre-trainfrgghifpothesis that unsupervised
pre-training acts as a regularizer would suggest that we should seelatiacreasing effectiveness
of unsupervised pre-training as the number of units per layer are sedea

We trained models oMNIST with and without pre-training using increasing layer sizes: 25,
50, 100, 200, 400, 800 units per layer. Results are shown in Figurei8litQively similar results
were obtained orshapeset In the case of SDAE, we were expecting the denoising pre-training
procedure to help classification performance most for large layers; thiscsuse the denoising
pre-training allows useful representations to be learned in the overletangase, in which a layer
is larger than its input (Vincent et al., 2008). What we observe is a matersytic effect: while
unsupervised pre-training helps for larger layers and deeper netwbalso appears to hurt for too
small networks.

Figure 9 also shows that DBNs behave qualitatively like SDAES, in the skatansupervised
pre-training architectures with smaller layers hurts performance. ExpetsroelnfiniteMNIST
reveal results that are qualitatively the same. Such an experiment seepuoitgh/to a re-verification
of the regularization hypothesis. In this case, it would seem that unsspeéipre-training acts as an
additional regularizer for both DBN and SDAE models—on top of the regaton provided by
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Figure 9: Effect of layer size on the changes brought by unsumehpse-training, for networks
with 1, 2 or 3 hidden layers. Experiments ONIST. Error bars have a height of two
standard deviations (over initialization seed). Pre-training hurts for smiaiter sizes
and shallower networks, but it helps for all depths for larger networks

the small size of the hidden layers. As the model size decreases fronidgighunits, the general-
ization error increases, and it increases more with unsupervisedapmawy presumably because of
the extra regularization effect: small networks have a limited capacity als@atiyrther restricting
it (or introducing an additional bias) can harm generalization. Suchudt gsems incompatible
with a pure optimization effect. We also obtain the result that DBNs and SDA&s 40 have
qualitatively similar effects as pre-training strategies.

The effect can be explained in terms of the role of unsupervised pgréagaas promoting input
transformations (in the hidden layers) that are useful at capturing thevaaations in the input
distributionP(X). It may be that only a small subset of these variations are relevantddigting
the class labeY. When the hidden layers are small it is less likely that the transformations for
predictingY are included in the lot learned by unsupervised pre-training.

7.4 Experiment 4: Challenging the Optimization Hypothesis

Experiments 1-3 results are consistent with the regularization hypothasiExqeriments 2—3
would appear to directly support the regularization hypothesis over thaaite—that unsuper-
vised pre-training aids in optimizing the deep model objective function.

In the literature there is some support for the optimization hypothesis. Behgio @007)
constrained the top layer of a deep network to have 20 units and measaraditting error of
networks with and without pre-training. The idea was to prevent the nksaiosm overfitting the
training error simply with the top hidden layer, thus to make it clearer whethmee sptimization

646



WHY DOESUNSUPERVISEDPRE-TRAINING HELP DEEPLEARNING?

effect (of the lower layers) was going on. The reported training aricetesrs were lower for pre-
trained networks. One problem with the experimental paradigm used lyidetal. (2007) is their
use of early stopping. This is problematic because, as previously mentesdstopping is itself
a regularizer, and it can influence greatly the training error that is olotalhis conceivable that if
Bengio et al. (2007) had run the models to convergence, the resultsttaddoeen different. We
needed to verify this.

Figure 10 shows what happens without early stopping. The training irsiill higher for
pre-trained networks even though the generalization error is lower.rd@$ugt now favors the regu-
larization hypothesis against the optimization story. What may have hapseihed early stopping
prevented the networks without pre-training from moving too much towareis dpparent local
minimum.

%— 3 layers without pre-training
@@ 3 layers with denoising auto-encoder pre-training

log(test NLL)

107 10°
log(train NLL)

Figure 10: FOoMNIST, a plot of the log(train NLL) vs. log(test NLL) at each epoch of trainife
top layer is constrained to 20 units.

7.5 Experiment 5: Comparing pre-training to L1 and L, regularization

An alternative hypothesis would be that classical ways of regularizingdquerhaps achieve the
same effect as unsupervised pre-training. We investigated the effégtand L, regularization
(i.e., adding d|8||1 or ||8]|5 term to the supervised objective function) in a network without pre-
training. We found that while in the case MNIST a small penalty can in principle help, the gain is
nowhere near as large as it is with pre-training. RomiteMNIST |, the optimal amount df; and

L, regularization is zerd®

13. Which is consistent with the classical view of regularization, in which feceghould diminish as we add more and
more data.
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This is not an entirely surprising finding: not all regularizers are coeatgial and these results
are consistent with the literature on semi-supervised training that showsthapervised learning
can be exploited as a particularly effective form of regularization.

7.6 Summary of Findings: Experiments 1-5

So far, the results obtained from the previous experiments point towgnagtts clear explanation
of the effect of unsupervised pre-training: namely, that its effect egalarization effect. We have
seen that it is not simply sufficient to sample random weights with the same magnilhgd(data-
dependent) unsupervised initialization is crucial. We have also obsemeckihonical regularizers
(L1/L2 penalties on the weights) do not achieve the same level of performance.

The most compelling pieces of evidence in support of the regularizatiootiwgis are Figures
8 and 9. The alternative explanation—that unsupervised pre-traingigrhaptimization effect—
suggested by Bengio et al. (2007) doesn’t seem to be supported bymerimental setup.

8. The Online Learning Setting

Our hypothesis included not only the statistical/phenomenological hypottiegisinsupervised
pre-training acted as a regularizer, but also contains a mechanismii@uob behavior arises both
as a consequence of the dynamic nature of training—following a stochastiegt through two
phases of training and as a consequence of the non-convexity ofgbe/ged objective function.

In our hypothesis, we posited that early examples induce changes in th@tmdagof the
weights that increase the amount of non-linearity of the network, which imdecreases the num-
ber of regions accessible to the stochastic gradient descent precethis means that the early
examples (be they pre-training examples or otherwise) determine the badtraction for the re-
mainder of training; this also means that the early examples have a disproptetiofluence on
the configuration of parameters of the trained models.

One consequence to the hypothesized mechanism is that we would pratlict the online
learning setting with unbounded or very large data sets, the behaviosopearvised pre-training
would diverge from the behavior of a canonical regularizgy (). This is because the effectiveness
of a canonical regularizetecreasess the data set grows, whereas the effectiveness of unsupervised
pre-training as a regularizeriisaintained as the data set grows.

Note that stochastic gradient descent in online learning is a stochastiergrdescent optimiza-
tion of the generalization error, so good online error in principle implies tlesdns optimizing well
the generalization error. Indeed, each grad?éﬁﬁ) for example(x,y) (with L(x,y) the supervised
loss with inputx and labely) sampled from the true generating distributifx,y) is an unbiased
Monte-Carlo estimator of the true gradient of generalization error, thgg,iﬁ(,%P(x,y)dx

In this section we empirically challenge this aspect of the hypothesis andtshbthe evidence
does indeed support our hypothesis over what is more typically expieotad regularizer.

8.1 Experiment 6: Effect of Pre-training with Very Large Data Sets

The results presented here are perhaps the most surprising findthgspafper. Figure 11 shows the
online classification error (on the next block of examples, as a movingg®gfor 6 architectures
that are trained oimfiniteMNIST  : 1 and 3-layer DBNs, 1 and 3-layer SDAE, as well as 1 and
3-layer networks without pre-training.
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Budget of 10 million iterations
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-=-1 layer without pre-training
—3 layers without pre-training
—+-1 layer with RBM pre-training
—+—3 layers with RBM pre-training !
-@-1 layer with denoising auto-encoder pre-training 9
—o—3 layers with denoising auto-encoder pre-training

Online classification error
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0 1 2 3 4 5 6 7 8 9 10

Number of examples seen x10°

Figure 11: Comparison between 1 and 3-layer networks trainddfioiteMNIST . Online classi-
fication error, computed as an average over a block of last 100,00G err

We can draw several observations from these experiments. FirsteB#ayworks without
pre-training are worse at generalization, compared to the l-layeradguiy This confirms the
hypothesis that even in an online setting, optimization of deep networks isrhidyan shallow
ones. Second, 3-layer SDAE models seem to generalize better thanr PBMs. Finally and
most importantly, the pre-training advantage does not vanish as the nuimibgining examples
increases, on the contrary.

Note that the number of hidden units of each model is a hyperparatfi@ertheoretical results
suggest that 1-layer networks without pre-training should in principlalbe to represent the input
distribution as capacity and data grow. Instead, without pre-training,dtveonks are not able to
take advantage of the additional capacity, which again points towards tih@zgiion explanation.
It is clear, however, thathe starting point of the non-convex optimization matters even for
networks that are seemingly “easier” to optimize (1-layer ones), whichatgour hypothesis.

Another experiment that shows the effects of large-scale online stazhas-convex optimiza-
tion is shown in Figure 12. In the setting lofiniteMNIST ~ , we compute the error on thimining
set in the same order that we presented the examples to the models. We olesera¢iateresting
results: first, note that both models are better at classifying more receatiyegamples. This is a
natural effect of stochastic gradient descent with a constant learati@@which gives exponentially
more weight to recent examples). Note also that examples at the beginniminaidrare essen-
tially like test examples for both models, in terms of error. Finally, we obsen#etlie pre-trained

14. This number was chosen individually for each model s.t. the errdhe last 1 million examples is minimized. In
practice, this meant 2000 units for 1-layer networks and 1000 unitsAlay8rlayer networks.
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classification error in percent

+— 1-layer network without pretraining
e—e 1-layer network with RBM pre-training

1 1 1
0'0%.0 0.2 0.4 0.6 0.8 1.0
training sample le7

Figure 12: Error of 1-layer network with RBM pre-training and withouttlog 10 million examples
used for training it. The errors are calculated in the same order (frooleght, above)
as the examples were presented during training. Each error barpmmdssto a block
of consecutive training examples.

model is better across the board the training setThis fits well with the optimization hypothesis,
since it shows that unsupervised pre-training has an optimization effect.

What happens in this setting is that the training and generalization errorsrgeras the em-
pirical distribution (defined by the training set) converges to the true datébdison. These results
show that the effectiveness of unsupervised pre-training doesmutish with increasing data set
sizes. This would be unexpected from a superficial understandingsoipervised pre-training as
a regularization method. However it is entirely consistent with our interpretasimted in our
hypothesis, of the role of unsupervised pre-training in the online settingstotthastic gradient
descent training on a non-convex objective function.

8.2 Experiment 7: The Effect of Example Ordering

The hypothesized mechanism implies, due to the dynamics of learning—theseaneeeight mag-
nitude and non-linearity as training proceeds, as well as the depenofghecbasin of attraction on
early data—that, when training with stochastic gradient descent, we shemiidgeased sensitivity
to early examples. In the caselofiniteMNIST ~ we operate in an online stochastic optimization
regime, where we try to find a local minimum of a highly non-convex objectimetion. It is then
interesting to study to what extent the outcome of this optimization is influencedebgxmples
seen at different points during training, and whether the early examplesastronger influence
(which would not be the case with a convex objective).

To quantify the variance of the outcome with respect to training samples etatiffpoints dur-
ing training, and to compare these variances for models with and withotriginéag, we proceeded
with the following experiment. Given a data set with 10 million examples, we varygbampling)

650



WHY DOESUNSUPERVISEDPRE-TRAINING HELP DEEPLEARNING?

the first million examples (across 10 different random draws, samplindexetit set of 1 million
examples each time) and keep the other ones fixed. After training the (1@sna& measure the
variance (across the 10 draws) of th&putof the networks on a fixed test set (i.e., we measure the
variance in function space). We then vary the next million examples in the sesieh, and so on,

to see how much each of the ten parts of the training set influenced the fictibiu

Variance of the output
8 T T T T T T T
K =< =< 1-layer network without pretraining
: @ -@1-layer network with RBM pre-training

~
T
-

)]

w

w

N

Mean of the variance and the std to the mean
N

=

1 1 1 1 1 1 | 1
8.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction at which we vary the examples

Figure 13: Variance of the output of a trained network with 1 layer. Thi@mmee is computed as
a function of the point at which we vary the training samples. Note that @& fark
corresponds to the start of pre-training.

Figure 13 shows the outcome of such an analysis. The samples at theibgtigio seem to
influence the output of the networks more than the ones at the end. Hpwdseariance isower
for the networks that have been pre-trained. In addition to that, onddshote that the variance of
pre-trained network at.@5 (i.e., the variance of the output as a function of the first samples used fo
supervised training) iwer than the variance of the supervised network.at @uch results imply
that unsupervised pre-training can be seen as a sort of varianggicettechnique, consistent with
a regularization hypothesis. Finally, both networks are more influenceledgist examplesised
for optimization, which is simply due to the fact that we use stochastic gradigmtawconstant
learning rate, where the most recent examples’ gradient has a gréhatenge.

These results are consistent with what our hypothesis predicts: bothctitbdt early examples
have greater influence (i.e., the variance is higher) and that pre-tnaioddls seem to reduce this
variance are in agreement with what we would have expected.

15. Which araunsupervise@xamples, for the red curve, until the28 mark in Figure 13.
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8.3 Experiment 8: Pre-training only k layers

From Figure 11 we can see that unsupervised pre-training makes qiffierargte for 3 layers, on
InfiniteMNIST . In Figure 14 we explore the link between depth and unsupervisedginiaty in
more detail. The setup is as follows: for baddNIST and InfiniteMNIST ~ we pre-train only the
bottomk layers and randomly initialize the tap— k layers in the usual way. In this experiment,
n= 3 and we vank from 0 (which corresponds to a network with no pre-trainingi te n (which
corresponds to the normal pre-trained case).

For MNIST, we plot the log(train NLL) vs. log(test NLL) trajectories, where eachpoorre-
sponds to a measurement after a certain number of epochs. The tragegtreughly from the
right to left and from top to bottom, corresponding to the lowering of the trgimimd test errors.
We can also see that models overfit from a certain point onwards.

3-layer net, total of 10000000 iterations

:
- — - ! 4 : —©— bottom 0 pretraine
° . no-pretral nlng == bottom 1 pretraine:
¥— pretrain 1st layer : i 3 bottom 2 pretrain

*~—t

2 3
G aaa

bottom 3 pretr
pretrain 1st and 2nd layers —9— bottom 3 pretrain
pretrain all 3 layers

log(test NLL)
=
o

Online classification error

10~Z 1 1 1 1 i
10° 10* 102 102 107 10° 0 1 2 3 4 5 6 7 8 9 10
log(train NLL) Number of examples seen «10

Figure 14: On the left for MNIST, a plot of the log(train NLL) vs. log(test NLL) at each epoch of
training. We pre-train the first layer, the first two layers and all threertaysing RBMs
and randomly initialize the other layers; we also compare with the network vidngeses
are all randomly initialized.On the right InfiniteMNIST , the online classification
error. We pre-train the first layer, the first two layers or all three \ysing denoising
auto-encoders and leave the rest of the network randomly initialized.

For InfiniteMNIST ~ , we simply show the online error. The results are ambiguous w.r.t the
difficulty of optimizing the lower layers versus the higher ones. We woule lexpected that the
largest incremental benefit came from pre-training the first layer drtfus layers. It is true for
the first two layers, but not the first. As we pre-train more layers, the ldicome better at
generalization. In the case of the finMNIST, note how the final training error (after the same
number of epochs) becomesrsewith pre-training of more layers. This clearly brings additional
support to the regularization explanation.
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9. Discussion and Conclusions

We have shown that unsupervised pre-training adds robustnessep ambhitecture. The same set
of results also suggests that increasing the depth of an architecture tloapi®-trained increases
the probability of finding poor apparent local minima. Pre-trained netwgitkssconsistently better
generalization. Our visualizations point to the observations that pre-traie®vorks learn qual-
itatively different features (if networks are visualized in the weight sp@ompared to networks
without pre-training. Moreover, the trajectories of networks with diffi¢iaitialization seeds seem
to fall into many distinct apparent local minima, which are again differerd &emingly far apart)
depending on whether we use pre-training or not.

We have shown that unsupervised pre-training is not simply a way of gettipgod initial
marginal distribution, and that it captures more intricate dependenciesédrepaeameters. One of
our findings is that deep networks with unsupervised pre-training seerhioit some properties of
a regularizer: with small enough layers, pre-trained deep architectieaystematically worse than
randomly initialized deep architectures. Moreover, when the layers aenbiggh, the pre-trained
models obtain worse training errors, but better generalization perfoemauditionally, we have
re-done an experiment which purportedly showed that unsupervigetigining can be explained
with an optimization hypothesis and observed a regularization effect instéadlso showed that
classical regularization techniques (such.g4_, penalties on the network weights) cannot achieve
the same performance as unsupervised pre-training, and that theoéfi@supervised pre-training
does not go away with more training data, so if unsupervised pre-trainingegudarizer, it is
certainly of a rather different kind.

The two unsupervised pre-training strategies considered—denoismgacoders and Restricted
Boltzmann Machines—seem to produce qualitatively similar observations. Véediserved that,
surprisingly, the pre-training advantage is present even in the casallyflarge training sets, point-
ing towards the conclusion that the starting point in the non-convex optimizatadolem is indeed
quite important; a fact confirmed by our visualizations of filters at variousl$ewn the network.
Finally, the other important set of results show that unsupervised préatyaacts like a variance
reduction technique, yet a network with pre-training has a lower trainirgy en a very large data
set, which supports an optimization interpretation of the effect of pre-training

How do we make sense of all these results? The contradiction betweetookstike regular-
ization effects and what looks like optimization effects appears, on thacsyrinresolved. Instead
of sticking to these labels, we attempted to draw a hypothesis, describedtionS&@bout the
dynamics of learning in an architecture that is trained using two phasasp@mssed pre-training
and supervised fine-tuning), which we believe to be consistent with albitncaresults.

This hypothesis suggests that there are consequences of the nexityoof the supervised
objective function, which we observed in various ways throughouegperiments. One of these
consequences is that early examples have a big influence on the outctairing and this is one
of the reasons why in a large-scale setting the influence of unsupepriseédiining is still present.
Throughout this paper, we have delved on the idea that the basin otiattracuced by the early
examples (in conjunction with unsupervised pre-training) is, for all pralgtiarposes, a basin from
which supervised training does not escape.

This effect can be observed from the various visualizations and mpeafice evaluations that
we made. Unsupervised pre-trainingas a regularizer that only influences the starting point of
supervised training, has an effect that, contrary to classical regulesjaioes not disappear with
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more data(at least as far as we can see from our results). Basically, unssggpre-training favors
hidden units that compute features of the inguthat correspond to major factors of variation in
the trueP(X). Assuming that some of these are near features useful at predictiagjors inY,
unsupervised pre-training sets up the parameters near a solution ofddictpre generalization
error.

One of the main messages that our results imply is that the optimization of a neexcaio
jective function with stochastic gradient descent presents challengesdtysis, especially in a
regime with large amounts of data. Our analysis so far shows that it is possibietworks that
are trained in such a regime to be influenced more by early examples. Thisamproblems in
scenarios where we would like our networks to be able to capture more wifthation in later
examples, that is, when training from very large data sets and trying toreaptat of information
from them.

One interesting realization is that with a small training set, we do not usuallylptibhimpor-
tance on minimizing the training error, because overfitting is a major issue; thgrarror is not
a good way to distinguish between the generalization performance of twasnddehat setting,
unsupervised pre-training helps to find apparent local minima that hates generalization error.
With a large training set, as we saw in Figure 12, the empirical and true distrisutamverge. In
such a scenaridjnding a better apparent local minimum will matter and stronger (bettet}- op
mization strategies should have a significant impact on generalization thledraining set is very
large. Note also that it would be interesting to extend our experimental techniqules fyoblem
of training deep auto-encoders (with a bottleneck), where previouts€slinton and Salakhutdi-
nov, 2006) show that not only test error but also training error istiyreeduced by unsupervised
pre-training, which is a strong indicator of an optimization effect. We hysitlkethat the pres-
ence of the bottleneck is a crucial element that distinguishes the deeprangidees from the deep
classifiers studied here.

In spite of months of CPU time on a cluster devoted to the experiments descaledahich
is orders of magnitude more than most previous work in this area), more certknly be done
to better understand these effects. Our original goal was to have witlbtied experiments with
well understood data sets. It was not to advance a particular algorithnather to try to better
understand a phenomenon that has been well documented elsewhasthéless, our results are
limited by the data sets used and it is plausible that different conclusionslwedidwn, should the
same experiments be carried out on other data.

Our results suggest that optimization in deep networks is a complicated prdidens influ-
enced in great part by the early examples during training. Future wotkdhblarify this hypothesis.
Ifitis true and we want our learners to capture really complicated distribaifiom very large train-
ing sets, it may mean that we should consider learning algorithms that reduetiettt of the early
examples, allowing parameters to escape from the attractors in whichtdeasring dynamics get
stuck.

The observations reported here suggest more detailed explanatiotisdbamlready discussed,
which could be tested in future work. We hypothesize that the factorsrigitiaan present in the in-
put distribution are disentangled more and more as we go from the inputddyigher-levels of the
feature hierarchy. This is coherent with observations of increasirgiance to geometric transfor-
mations in DBNSs trained on images (Goodfellow et al., 2009), as well as bglizgg the varia-
tions in input images generated by sampling from the model (Hinton, 2008kiBdset al., 2008),
or when considering the preferred input associated with different anitéferent depths (Lee et al.,
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2009; Erhan et al., 2009). As a result, during early stages of leartiagipper layers (those that
typically learn quickly) would have access to a more robust representzttbe input and are less
likely to be hindered by the entangling of factors variations present in the.irpthis disentan-
gling hypothesis is correct, it would help to explain how unsupervisedrpneing can address the
chicken-and-egg issue explained in Section 2: the lower layers of avssgxk deep architecture
need the upper layers to define what they should extract, and vica-Vestead, the lower layers
can extract robust and disentangled representations of the factemsiaion and the upper layers
select and combine the appropriate factors (sometimes not all at the tom hégee). Note that
as factors of variation are disentangled, it could also happen that sotmenofare not propagated
upward (before fine-tuning), because RBMs do not try to repraagheir hidden layer input bits
that are independent.

To further explain why smaller hidden layers yield worse performance wékraining than
without (Figure 9), one may hypothesize further that, for some data set$edling factors of
variation present ifP(X) (presumably the only ones captured in a smaller layer) are less predictive
of Y than random projectiod® can be, precisely because of the hypothesized disentangling effect.
With enough hidden units, unsupervised pre-training may extract amorigryex set of learned
features some that are highly predictiveYo{more so than random projections). This additional
hypothesis could be tested by measuring the mutual information betweeniddeh bnit and the
object categories (as done by Lee et al., 2009), as the number of hiddtsns varied (like in
Figure 9). Itis expected that the unit with the most mutual information will beitdesmative with
pre-training when the number of hidden units is too small, and more informaiikigove-training
when the number of hidden units is large enough.

Under the hypothesis that we have proposed in Section 3, the followinl resinaccounted
for: in Figure 8(a), training error is lower with pre-training when thereng/mne hidden layer,
but worse with more layers. This may be explained by the following additiopabthesis. Al-
though each layer extracts information ab¥uh some of its features, it is not guaranteed that all
of that information is preserved when moving to higher layers. One mayesusps in particular
for RBMs, which would not encode in their hidden layer any input bits thatld/ be marginally
independent of the others, because these bits would be explained higithe biases: perfect dis-
entangling ofY from the other factors of variation i may yield marginally independent bits about
Y. Although supervised fine-tuning should help to bubble up that informatiwartts the output
layer, it might be more difficult to do so for deeper networks, explainingtim/e-stated feature of
Figure 8. Instead, in the case of a single hidden layer, less informatian ¥bmould have been
dropped (if at all), making the job of the supervised output layer easikis i$ consistent with
earlier results (Larochelle et al., 2009) showing that for several @#asapervised fine-tuning sig-
nificantly improves classification error, when the output layer only takas iinpm the top hidden
layer. This hypothesis is also consistent with the observation made heueg Eighat unsupervised
pre-training actually does not help (and can hurt) for too deep networks

In addition to exploring the above hypotheses, future work should incdndeavestigation of
the connection between the results presented in this paper and by HintS8alaktiutdinov (2006),
where it seems to be hard to obtain a good training reconstruction erroreéthalito-encoders (in
an unsupervised setting) without performing pre-training. Other awefarduture work include
the analysis and understanding of deep semi-supervised techniques avigedoes not separate

16. Meaning the random initialization of hidden layers.
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between the pre-training phase and the supervised phase, suctkdsMaeston et al. (2008) and
Larochelle and Bengio (2008). Such algorithms fall more squarely intetimrof semi-supervised
methods. We expect that analyses similar to the ones we performed woudtEldigly harder, but
perhaps revealing as well.

Many open questions remain towards understanding and improving deleipeetures. Our
conviction is that devising improved strategies for learning in deep archiésctequires a more
profound understanding of the difficulties that we face with them. This \wehs with such under-
standing via extensive simulations and puts forward a hypothesis expl#igmgechanisms behind
unsupervised pre-training, which is well supported by our results.

Acknowledgments

This research was supported by funding from NSERC, MITACS, FQRINd the Canada Research
Chairs. The authors also would like to thank the editor and reviewers, laasveernando Pereira
for their helpful comments and suggestions.

References

Shun-ichi Amari, Noboru Murata, Klaus-RobertiiNer, Michael Finke, and Howard Hua Yang.
Asymptotic statistical theory of overtraining and cross-validati®iEE Transactions on Neural
Networks 8(5):985-996, 1997.

Lalit Bahl, Peter Brown, Peter deSouza, and Robert Mercer. Maximutahinformation es-
timation of hidden markov parameters for speech recognitionintirnational Conference on
Acoustics, Speech and Signal Processing (ICAS&R)es 49-52, Tokyo, Japan, 1986.

Andrew E. Barron. Complexity regularization with application to artificial m¢uretworks. In
G. Roussas, editoNonparametric Functional Estimation and Related Topuages 561-576.
Kluwer Academic Publishers, 1991.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral tegbsitpr embedding
and clustering. In T.G. Dietterich, S. Becker, and Z. Ghahramani, edAdsances in Neural
Information Processing Systems 14 (NIPS,@ambridge, MA, 2002. MIT Press.

Yoshua Bengio. Learning deep architectures foriR&lundations and Trends in Machine Learnjng
2(1):1-127, 2009. Also published as a book. Now Publishers, 2009.

Yoshua Bengio and Olivier Delalleau. Justifying and generalizing cdieadivergence.Neural
Computation21(6):1601-1621, June 2009.

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towardsiAl.Bottou, O. Chapelle,
D. DeCoste, and J. Weston, editoksirge Scale Kernel Machingpages 321-360. MIT Press,
2007.

Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. The curse dflfigariable functions
for local kernel machines. In Y. Weiss, B. Sitkopf, and J. Platt, editor#dvances in Neu-
ral Information Processing Systems 18 (NIPS;Q%ges 107-114. MIT Press, Cambridge, MA,
2006.

656



WHY DOESUNSUPERVISEDPRE-TRAINING HELP DEEPLEARNING?

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelleedrlayer-wise training
of deep networks. In Bernhard Silkopf, John Platt, and Thomas Hoffman, editokslvances
in Neural Information Processing Systems 19 (NIPS'pépes 153-160. MIT Press, 2007.

Marc H. Bornstein. Sensitive periods in development : interdisciplinary perspectives / edjted b
Marc H. Bornstein Lawrence Erlbaum Associates, Hillsdale, N.J. :, 1987.

Olivier Chapelle, Jason Weston, and Bernhardfapf. Cluster kernels for semi-supervised learn-
ing. In S. Becker, S. Thrun, and K. Obermayer, editAidyances in Neural Information Process-
ing Systems 15 (NIPS’'0)ages 585-592, Cambridge, MA, 2003. MIT Press.

Olivier Chapelle, Bernhard Soétkopf, and Alexander ZierSemi-Supervised LearninylIT Press,
2006.

Ronan Collobert and Jason Weston. A unified architecture for natunglitage processing: Deep
neural networks with multitask learning. In William W. Cohen, Andrew McCallamg Sam T.
Roweis, editorsProceedings of the Twenty-fifth International Conference on Machiaenirey
(ICML'08), pages 160-167. ACM, 2008.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent.ualiging higher-layer
features of a deep network. Technical Report 1341, UnivedstMonteal, 2009.

Patrick Gallinari, Yann LeCun, Sylvie Thiria, and Francoise Fogelmari&oMemoires associa-
tives distribuees. IProceedings of COGNITIVA 8Paris, La Villette, 1987.

lan Goodfellow, Quoc Le, Andrew Saxe, and Andrew Ng. Measuriagriances in deep networks.
In'Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culp#éiditors,Advances in
Neural Information Processing Systems gages 646—-654. 2009.

Raia Hadsell, Ayse Erkan, Pierre Sermanet, Marco Scoffier, Urs Mallet Yann LeCun. Deep
belief net learning in a long-range vision system for autonomous off-thiaving. In Proc.
Intelligent Robots and Systems (IROS;G8)ges 628-633, 2008.

Johan Histad. Almost optimal lower bounds for small depth circuits Ptaceedings of the 18th
annual ACM Symposium on Theory of Computpapges 6—20, Berkeley, California, 1986. ACM
Press.

Johan Hastad and Mikael Goldmann. On the power of small-depth threshold cirdddmputa-
tional Complexity1:113-129, 1991.

Geoffrey E. Hinton. Training products of experts by minimizing contrasiivergence. Neural
Computation14:1771-1800, 2002.

Geoffrey E. Hinton. To recognize shapes, first learn to generate snalgePaul Cisek, Trevor
Drew, and John Kalaska, editoiSpmputational Neuroscience: Theoretical Insights into Brain
Function Elsevier, 2007.

Geoffrey E. Hinton and Ruslan Salakhutdinov. Reducing the dimensiondligta with neural
networks.Science313(5786):504-507, July 2006.

657



ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

Goeffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learaliggrithm for deep belief
nets.Neural Computationl8:1527-1554, 2006.

Hugo Larochelle and Yoshua Bengio. Classification using discriminatstdeted Boltzmann ma-
chines. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editersceedings
of the Twenty-fifth International Conference on Machine Learning (IO8IL. pages 536—-543.
ACM, 2008.

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, astii¥a Bengio. An em-
pirical evaluation of deep architectures on problems with many factorsriattican. Inint. Conf.
Mach. Learn, pages 473-480, 2007.

Hugo Larochelle, Yoshua Bengio, Jerome Louradour, and Pasodilira Exploring strategies for
training deep neural networksThe Journal of Machine Learning Researd®:1-40, January
2009.

Julia A. Lasserre, Christopher M. Bishop, and Thomas P. Minka. Primtiplerids of generative
and discriminative models. IRroceedings of the Computer Vision and Pattern Recognition
Conference (CVPR’06pages 87-94, Washington, DC, USA, 2006. IEEE Computer Society.

Yann LeCun.Modeles connexionistes de I'apprentissa@hD thesis, Universitde Paris VI, 1987.

Yann LeCun, leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-basedihegapplied
to document recognitiorProceedings of the IEEB6(11):2278—-2324, 1998.

Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deefrietlirodel for visual area
V2. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editgkdyances in Neural Information
Processing Systems 20 (NIPS’0OFages 873-880. MIT Press, Cambridge, MA, 2008.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Nagvollitional deep belief
networks for scalable unsupervised learning of hierarchical reptagons. In Eon Bottou and
Michael Littman, editorsProceedings of the Twenty-sixth International Conference on Machine
Learning (ICML'09) ACM, Montreal (Qc), Canada, 2009.

Géélle Loosli, Sephane Canu, andéon Bottou. Training invariant support vector machines us-
ing selective sampling. In&on Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston,
editors,Large Scale Kernel Machingpages 301-320. MIT Press, Cambridge, MA., 2007.

Hossein Mobahi, Ronan Collobert, and Jason Weston. Deep learnimgtémmporal coherence
in video. In Léon Bottou and Michael Littman, editoBroceedings of the 26th International
Conference on Machine Learningages 737—744, Montreal, June 2009. Omnipress.

Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generatiassifiers: A comparison
of logistic regression and naive bayes. In T.G. Dietterich, S. BeckdrZaGhahramani, editors,
Advances in Neural Information Processing Systems 14 (NIPSades 841-848, 2002.

Simon Osindero and Geoffrey E. Hinton. Modeling image patches with a dirddéearchy of
markov random field. In J.C. Platt, D. Koller, Y. Singer, and S. Roweigpesj Advances in
Neural Information Processing Systems 20 (NIPS'@dpes 1121-1128, Cambridge, MA, 2008.
MIT Press.

658



WHY DOESUNSUPERVISEDPRE-TRAINING HELP DEEPLEARNING?

Dan Povey and Philip C. Woodland. Minimum phone error and i-smoothingroroved discrim-
inative training. InAcoustics, Speech, and Signal Processing, 2002. ProceediGgsS8P '02).
IEEE International Conference ¢rolume 1, pages I-105-1-108 vol.1, 2002.

Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Ya@un. Efficient learning
of sparse representations with an energy-based model. In BIk8gi, J. Platt, and T. Hoffman,
editors,Advances in Neural Information Processing Systems 19 (NIPS2@jes 1137-1144.
MIT Press, 2007.

Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparagufe learning for deep belief
networks. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editAdsjances in Neural Infor-
mation Processing Systems 20 (NIPS,@dges 1185-1192, Cambridge, MA, 2008. MIT Press.

Ruslan Salakhutdinov and Geoffrey E. Hinton. Using deep belief nets o ¢esariance kernels
for Gaussian processes. In J.C. Platt, D. Koller, Y. Singer, and SeRpeditors Advances in
Neural Information Processing Systems 20 (NIPS'@dpes 1249-1256, Cambridge, MA, 2008.
MIT Press.

Ruslan Salakhutdinov and Geoffrey E. Hinton. Semantic hashirgrdeceedings of the 2007 Work-
shop on Information Retrieval and applications of Graphical Models (BIZ007) Amsterdam,
2007. Elsevier.

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey E. Hinton. RestrictettZBnann machines for
collaborative filtering. In Zoubin Ghahramani, editBrpceedings of the Twenty-fourth Interna-
tional Conference on Machine Learning (ICML'QPages 791798, New York, NY, USA, 2007.
ACM.

Sebastian H. Seung. Learning continuous attractors in recurrent mketwoln M.l. Jordan,
M.J. Kearns, and S.A. Solla, editorAdvances in Neural Information Processing Systems 10
(NIPS’97) pages 654—660. MIT Press, 1998.

Jonas Sjberg and Lennart Ljung. Overtraining, regularization and seardbing minimum, with
application to neural networks$nternational Journal of Contrgl62(6):1391-1407, 1995.

Joshua M. Susskind, Geoffrey E., Javier R. Movellan, and Adam Klefson. Generating facial
expressions with deep belief nets. In V. Kordic, edifdffective Computing, Emotion Modelling,
Synthesis and Recognitigmages 421-440. ARS Publishers, 2008.

Joshua Tenenbaum, Vin de Silva, and John C. Langford. A global georframework for nonlin-
ear dimensionality reductiorScience290(5500):2319-2323, December 2000.

Laurens van der Maaten and Geoffrey E. Hinton. Visualizing data ussng.tJournal of Machine
Learning Researgid:2579-2605, November 2008.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antderezagol. Extracting and
composing robust features with denoising autoencoders. In André®alMon and Sam Roweis,
editors,Proceedings of the 25th Annual International Conference on Mach&aering (ICML
2008) pages 1096-1103. Omnipress, 2008.

659



ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

Max Welling, Michal Rosen-Zvi, and Geoffrey E. Hinton. Exponentiahily harmoniums with an
application to information retrieval. In L.K. Saul, Y. Weiss, and L. Bottou, editddvances in
Neural Information Processing Systems 17 (NIPS'@dpes 1481-1488, Cambridge, MA, 2005.
MIT Press.

Jason Weston, Etéric Ratle, and Ronan Collobert. Deep learning via semi-supervised embed-
ding. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editBreceedings of the
Twenty-fifth International Conference on Machine Learning (ICML @&)ges 1168-1175, New
York, NY, USA, 2008. ACM.

Andrew Yao. Separating the polynomial-time hierarchy by oraclesProteedings of the 26th
Annual IEEE Symposium on Foundations of Computer Scigragges 1-10, 1985.

Long Zhu, Yuanhao Chen, and Alan Yuille. Unsupervised learningatgilistic grammar-markov
models for object categorie$EEE Transactions on Pattern Analysis and Machine Intelligence

31(1):114-128, 2009.

660



